【題目】如圖,已知在邊長為4的菱形ABCD中,∠C=60°,E是BC邊上一動點(與點B,C不重合).連接DE,作∠DEF=60°,交AB于點F,設(shè)CE=x,△FBE的面積為y.下列圖象中,能大致表示y與x的函數(shù)關(guān)系的是( 。
A.B.
C.D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場為了方便消費者購物,準(zhǔn)備將原來的階梯式自動扶梯改造成斜坡式自動扶梯.如圖所示,已知原階梯式扶梯AB長為10m,坡角∠ABD=30°;改造后斜坡式自動扶梯的坡角∠ACB=9°,請計算改造后的斜坡AC的長度,(結(jié)果精確到0.01(sin9°≈0.156,cos9°≈0.988,tan9°≈0.158)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+3與x軸交于A(﹣3,0),B(l,0)兩點,與y軸交于點C.
(1)求拋物線的解析式;
(2)點P是拋物線上的動點,且滿足S△PAO=2S△PCO,求出P點的坐標(biāo);
(3)連接BC,點E是x軸一動點,點F是拋物線上一動點,若以B、C、E、F為頂點的四邊形是平行四邊形時,請直接寫出點F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】校車安全是近幾年社會關(guān)注的重大問題,安全隱患主要是超速和超載,某中學(xué)數(shù)學(xué)活動小組設(shè)計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點C,再在筆直的車道l上確定點D,使CD與l垂直,測得CD的長等于24米,在l上點D的同側(cè)取點A、B,使∠CAD=30°,∠CBD=60°.
(1)求AB的長(結(jié)果保留根號);
(2)已知本路段對校車限速為45千米/小時,若測得某輛校車從A到B用時1.5秒,這輛校車是否超速?說明理由.(參考數(shù)據(jù):≈1.7,≈1.4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是⊙O的直徑,BA=BC,BD交AC于點E,點F在DB的延長線上,且∠BAF=∠C.
(1)求證:AF是⊙O的切線;
(2)若BC=2,BE=4,求⊙O半徑r.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是ABCD的對角線,AD⊥BD,AB=2cm,∠A=45°.動點P從點B出發(fā),以cm/s的速度沿BA運動到終點A,同時動點Q從點D出發(fā),以2cm/s的速度沿折線DB﹣BC向終點C運動,當(dāng)一點到達終點時另一點也停止運動.過點Q作QE⊥AD,交射線AD于點E,連接PQ,以PQ與EQ為邊作PQEF.設(shè)點P的運動時間為t(s),PQEF與ABCD重疊部分圖形的面積為S(cm2).
(1)AP= cm(用含的代數(shù)式表示);
(2)當(dāng)點F落在邊AD上時,求t的值:
(3)求S與t之間的函數(shù)關(guān)系式;
(4)連接FQ,當(dāng)FQ所在的直線將ABCD分成面積相等的兩部分時,直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB為直徑,作OD⊥AB交AC于點D,延長BC,OD交于點F,過點C作⊙O的切線CE,交OF于點E.
(1)求證:EC=ED;
(2)如果OA=4,EF=3,求弦AC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com