【題目】若存在3個互不相同的有理數(shù)a,b,c,使得|1﹣a|+|1﹣3a|+|1﹣4a|=|1﹣b|+|1﹣3b|+|1﹣4b|=|1﹣c|+|1﹣3c|+|1﹣4c|=t,則t=

A. B. C. 1 D. 2

【答案】C

【解析】試題解析:

存在3個互不相同的實數(shù)a,b,c,使得|1-a|+|1-3a|+|1-4a|=|1-b|+|1-3b|+|1-4b|=|1-c|+|1-3c|+|1-4c|=t,
a≥1時,原式=a-1+3a-1+4a-1=8a-3
≤a1時,原式=1-a+3a-1+4a-1=6a-1
≤a時,原式=1-a-3a+1+4a-1=1
a時,原式=1-a+1-3a+1-4a=3-8a,
t=1
故選B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如果關于x的一元二次方程ax2+bx+c=0有兩個實數(shù)根,且其中一個根為另一個根的2倍,則稱這樣的方程為“倍根方程”.
(1)請問一元二次方程x2﹣3x+2=0是倍根方程嗎?如果是,請說明理由.
(2)若一元二次方程ax2+bx﹣6=0是倍根方程,且方程有一個根為2,求a、b的值?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一個矩形停車場MNGE中,矩形ABCD是一輛機動車停放的車位示意圖,經(jīng)測量得AB=5.4米,BC=2.4米,AF=1.8米,HFAB.其中HF是另一車位的一邊,所有車位尺寸一樣,并按圖示并列劃定.

(1)求路寬EG;

(2)若停車場的長EM=85米,求這個停車場的停車車位數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y=的圖象交于一、三象限內(nèi)的A、B兩點,與x軸交于C點,點A的坐標為(2,m),點B的坐標為(n,﹣2),tan∠BOC=
(1)求該反比例函數(shù)和一次函數(shù)的解析式.
(2)求△BOC的面積.
(3)P是x軸上的點,且△PAC的面積與△BOC的面積相等,求P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是( )

A.所有的直角三角形都相似B.所有的等邊三角形都相似

C.所有的矩形都相似D.所有的菱形都相似

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若關于x的一元二次方程(p-1)x2-x+p2-1=0的一個根為0,則p的值為_________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=kx+2與x軸、y軸分別交于點A、B,點C(1,a)是該直線與雙曲線y=的一個交點,過點C作CD垂直y軸,垂足為D,且S△BCD=1.
(1)求雙曲線的解析式.
(2)設直線與雙曲線的另一個交點為E,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店需要購進一批電視機和洗衣機,根據(jù)市場調(diào)查,決定電視機進貨量不少于洗衣機進貨量的一半.電視機與洗衣機的進價和售價如下表:

電視機

洗衣機

進價(/)

1 800

1 500

售價(/)

2 000

1 600

計劃購進電視機和洗衣機共 100 臺,商店最多可籌集資金161 800 元.

(1)請你幫助商店算一算有多少種進貨方案(不考慮除進價之外的其他費用);

2)哪種進貨方案待商店銷售購進的電視機與洗衣機完畢后獲得的利潤最多?并求出最大的利潤(利潤=售價-進價)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個點從數(shù)軸上的原點開始,先向左移動6個單位,再向右移動4個單位長度,這時該點所對應的數(shù)是__

查看答案和解析>>

同步練習冊答案