【題目】規(guī)定一種新運(yùn)算:對于任意有理數(shù)ab,規(guī)定abab+2ab+a 如:131×3+2×1×3+116

1)求3(﹣1)的值;

2)若(a+1236,求a的值;

3)若m2x,n=(x3(其中x為有理數(shù)),試比較m、n的大。

【答案】10,2a=3,3)m>n.

【解析】

1)根據(jù)運(yùn)算的定義展開即可解題,

2)根據(jù)運(yùn)算的定義展開左側(cè),構(gòu)成一次方程,求解方程即可,

3)根據(jù)運(yùn)算的定義展開求出m,n,利用作差法表示出m-n=2x+2,最后根據(jù)非負(fù)性即可解題.

解:(1)由題可知, 3(﹣1=3-6+3=0,

2)(a+1)×4+4(a+1)+(a+1)=36,

整理得9a+1=36

解得a=3,

3m2x=2x+4x+2, n=(x3=x+x+x =4x,

∴m-n=2x+20,

∴m>n.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O的直徑為AB,點C在圓周上(異于A,B),ADCD.

(1)若BC=3,AB=5,求AC的值;

(2)若AC是DAB的平分線,求證:直線CD是O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個長方形運(yùn)動場被分隔成A,B,A,B,C共5個區(qū),A區(qū)是邊長為a m的正方形,C區(qū)是邊長為c m的正方形.

(1)列式表示每個B區(qū)長方形場地的周長,并將式子化簡;

(2)列式表示整個長方形運(yùn)動場的周長,并將式子化簡;

(3)如果a=40,c=10,求整個長方形運(yùn)動場的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,C=Rt,以BC為直徑的O交AB于點D,切線DE交AC于點E.

(1)求證:A=ADE;

(2)若AD=16,DE=10,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在踐行社會主義核心價值觀演講比賽中,對名列前20名的選手的綜合分?jǐn)?shù)m進(jìn)行分組統(tǒng)計,結(jié)果如表所示:

組號

分組

頻數(shù)

6≤m7

2

7≤m8

7

8≤m9

a

9≤m≤10

2

1)求a的值;

2)若用扇形圖來描述,求分?jǐn)?shù)在8≤m9內(nèi)所對應(yīng)的扇形圖的圓心角大小;

3)將在第一組內(nèi)的兩名選手記為:A1A2,在第四組內(nèi)的兩名選手記為:B1、B2,從第一組和第四組中隨機(jī)選取2名選手進(jìn)行調(diào)研座談,求第一組至少有1名選手被選中的概率(用樹狀圖或列表法列出所有可能結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們給出如下定義:順次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形.

(1)如圖1,四邊形ABCD中,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點.求證:中點四邊形EFGH是平行四邊形;

(2)如圖2,點P是四邊形ABCD內(nèi)一點,且滿足PA=PB,PC=PD,APB=CPD,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點,猜想中點四邊形EFGH的形狀,并證明你的猜想;

(3)若改變(2)中的條件,使∠APB=CPD=90°,其他條件不變,直接寫出中點四邊形EFGH的形狀,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點A2,3)、B6,3),連接AB.如果對于平面內(nèi)一點P,線段AB上都存在點Q,使得PQ1,那么稱點P是線段AB附近點

1)請判斷點D4.52.5)是否是線段AB附近點;

2)如果點H m,n)在一次函數(shù)的圖象上,且是線段AB附近點,求m的取值范圍;

3)如果一次函數(shù)y=x+b的圖象上至少存在一個附近點,請直接寫出b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上有三個點A、B、C,請回答下列問題.

1A、B、C三點分別表示 、 、 ;

2)將點B向左移動3個單位長度后,點B所表示的數(shù)是 ;

3)將點A向右移動4個單位長度后,點A所表示的數(shù)是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點DBC上,DEAB于點EDFBCAC于點F,BD=CF,BE=CD.若∠AFD=145°,則∠EDF=_____________.

查看答案和解析>>

同步練習(xí)冊答案