【題目】如圖,在Rt△ABC中,∠C=Rt∠,以BC為直徑的⊙O交AB于點D,切線DE交AC于點E.
(1)求證:∠A=∠ADE;
(2)若AD=16,DE=10,求BC的長.
【答案】(1)證明見解析;(2)15.
【解析】
試題分析:(1)只要證明∠A+∠B=90°,∠ADE+∠B=90°即可解決問題;
(2)首先證明AC=2DE=20,在Rt△ADC中,DC==12,設BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,可得x2+122=(x+16)2﹣202,解方程即可解決問題;
試題解析:(1)證明:連接OD,∵DE是切線,∴∠ODE=90°,∴∠ADE+∠BDO=90°,∵∠ACB=90°,∴∠A+∠B=90°,∵OD=OB,∴∠B=∠BDO,∴∠ADE=∠A.
(2)連接CD.
∵∠ADE=∠A,∴AE=DE,∵BC是⊙O的直徑,∠ACB=90°,∴EC是⊙O的切線,∴ED=EC,∴AE=EC,∵DE=10,∴AC=2DE=20,在Rt△ADC中,DC==12,設BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,∴x2+122=(x+16)2﹣202,解得x=9,∴BC= =15.
科目:初中數(shù)學 來源: 題型:
【題目】若某商品的原價為100元,連續(xù)兩次漲價后的售價為144元,設兩次平增長率為x.則下面所列方程正確的是( )
A.100(1﹣x)2=144
B.100(1+x)2=144
C.100(1﹣2x)2=144
D.100(1﹣x)2=144
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合題
(1)感知:如圖①,四邊形ABCD、CEFG均為正方形.易知BE=DG.
(2)探究:如圖②,四邊形ABCD、CEFG均為菱形,且∠A=∠F.求證:BE=DG.
(3)如圖③,四邊形ABCD、CEFG均為菱形,點E在邊AD上,點G在AD的延長線上.若AE=3ED,∠A=∠F,△EBC的面積為8,則菱形CEFG的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線y=﹣x+m分別交x軸,y軸于A,B兩點,已知點C(2,0).
(1)當直線AB經(jīng)過點C時,點O到直線AB的距離是 ;
(2)設點P為線段OB的中點,連結(jié)PA,PC,若∠CPA=∠ABO,則m的值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】麗水某公司將“麗水山耕”農(nóng)副產(chǎn)品運往杭州市場進行銷售,記汽車行駛時為t小時,平均速度為v千米/小時(汽車行駛速度不超過100千米/小時).根據(jù)經(jīng)驗,v,t的一組對應值如下表:
(1)根據(jù)表中的數(shù)據(jù),求出平均速度v(千米/小時)關于行駛時間t(小時)的函數(shù)表達式;
(2)汽車上午7:30從麗水出發(fā),能否在上午00之前到達杭州市場?請說明理由;
(3)若汽車到達杭州市場的行駛時間t滿足3.5≤t≤4,求平均速度v的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,∠A=30°,點P從點A出發(fā)以2cm/s的速度沿折線A﹣C﹣B運動,點Q從點A出發(fā)以a(cm/s)的速度沿AB運動,P,Q兩點同時出發(fā),當某一點運動到點B時,兩點同時停止運動.設運動時間為x(s),△APQ的面積為y(cm2),y關于x的函數(shù)圖象由C1,C2兩段組成,如圖2所示.
(1)求a的值;
(2)求圖2中圖象C2段的函數(shù)表達式;
(3)當點P運動到線段BC上某一段時△APQ的面積,大于當點P在線段AC上任意一點時△APQ的面積,求x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2017年5月14日至15日,“一帶一路”國際合作高峰論壇在北京舉行,本屆論壇期間,中國同30多個國家簽署經(jīng)貿(mào)合作協(xié)議,某廠準備生產(chǎn)甲、乙兩種商品共8萬件銷往“一帶一路”沿線國家和地區(qū),已知2件甲種商品與3件乙種商品的銷售收入相同,3件甲種商品比2件乙種商品的銷售收入多1500元.
(1)甲種商品與乙種商品的銷售單價各多少元?
(2)若甲、乙兩種商品的銷售總收入不低于5400萬元,則至少銷售甲種商品多少萬件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖為某城市部分街道示意圖,四邊形ABCD為正方形,點G在對角線BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路線為B→A→G→E,小聰行走的路線為B→A→D→E→F.若小敏行走的路程為3100m,則小聰行走的路程為 m.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com