【題目】兩千多年前,我國的學(xué)者墨子和他的學(xué)生做了小孔成像的實驗.他的做法是,在一間黑暗的屋子里,一面墻上開一個小孔,小孔對面的墻上就會出現(xiàn)外面景物的倒像.小華在學(xué)習(xí)了小孔成像的原理后,利用如圖裝置來驗證小孔成像的現(xiàn)象.已知一根點燃的蠟燭距小孔20 cm,光屏在距小孔30 cm處,小華測量了蠟燭的火焰高度為2 cm,則光屏上火焰所成像的高度為__________ cm.

【答案】3

【解析】

如圖,由ABCD,知OAB∽△OCD,再根據(jù)相似三角形對應(yīng)線段成比例即可求出CD的長.

如圖,OE20 cm,OF30 cm,AB2 cm,

ABCD,

∴△OAB∽△OCD,

,即,

CD3

即光屏上火焰所成像的高度為3 cm.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+ca≠0)的圖象如圖所示,則下列結(jié)論(14a+2b+c0;(2)方程ax2+bx+c0兩根之和小于零;(3yx的增大而增大;(4)一次函數(shù)yx+bc的圖象一定不過第二象限.其中正確的個數(shù)是( 。

A. 4 B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的口袋里裝有四個分別標(biāo)有1、2、3、4的小球,它們的形狀、大小等完全相同.小明先從口袋里隨機(jī)不放回地取出一個小球,記下數(shù)字為x;小紅在剩下有三個小球中隨機(jī)取出一個小球,記下數(shù)字y.

(1)計算由x、y確定的點(x,y)在函數(shù)y=﹣x+6圖象上的概率;

(2)小明、小紅約定做一個游戲,其規(guī)則是:若x、y滿足xy>6,則小明勝;若x、y滿足xy<6,則小紅勝.這個游戲規(guī)則公平嗎?說明理由;若不公平,怎樣修改游戲規(guī)則才對雙方公平?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道:選用同一長度單位量得兩條線段、的長度分別是,,那么就說兩條線段的比

,如果把表示成比值,那么,或.請完成以下問題:

四條線段,,中,如果________,那么這四條線段,,叫做成比例線段.

已知,那么________,________

如果,那么成立嗎?請用兩種方法說明其中的理由.

如果,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AC,BD相交于點O,點EOA的中點,連接BE并延長交AD于點F,已知SAEF=4,則下列結(jié)論:①;SBCE=36;SABE=12;④△AEFACD,其中一定正確的是( 。

A. ①②③④ B. ①④ C. ②③④ D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,給定銳角三角形ABC,小明希望畫正方形DEFG,使D,E位于邊BC上,F,G分別位于邊ACAB上,他發(fā)現(xiàn)直接畫圖比較困難,于是他先畫了一個正方形HIJK,使得點HI位于射線BC上,K位于射線BA上,而不需要求J必須位于AC上.這時他發(fā)現(xiàn)可以將正方形HIJK通過放大或縮小得到滿足要求的正方形DEFG.

閱讀以上材料,回答小明接下來研究的以下問題:

(1)如圖2,給定銳角三角形ABC,畫出所有長寬比為21的長方形DEFG,使DE位于邊BC上,FG分別位于邊AC,AB上.

(2)已知三角形ABC的面積為36BC12,在第(1)問的條件下,求長方形DEFG的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C90°,BC16 cm,AC12 cm,點P從點B出發(fā),沿BC2 cm/s的速度向點C移動,點Q從點C出發(fā),以1 cm/s的速度向點A移動,若點P、Q分別從點B、C同時出發(fā),設(shè)運動時間為ts,當(dāng)t__________時,CPQCBA相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,對角線AC,BD交于點E,BAC=90°,CED=45°,DCE=30°,DE=,BE=.求CD的長和四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是邊長為4的等邊三角形,點D是線段BC的中點,∠EDF120°,把

EDF繞點D旋轉(zhuǎn),使∠EDF的兩邊分別與線段AB、AC交于點E、F

1)當(dāng)DFAC時,求證:BECF;

2)在旋轉(zhuǎn)過程中,BE+CF是否為定值?若是,求出這個定值;若不是,請說明理由;

3)在旋轉(zhuǎn)過程中,連接EF,設(shè)BEx,△DEF的面積為S,求Sx之間的函數(shù)解析式,并求S的最小值.

查看答案和解析>>

同步練習(xí)冊答案