【題目】平行四邊形ABCD在平面直角坐標系中的位置如圖所示,其中A(﹣4,0),B(2,0),C(3,3)反比例函數(shù)的圖象經(jīng)過點C.
(1)求此反比例函數(shù)的解析式;
(2)將平行四邊形ABCD沿x軸翻折得到平行四邊形AD′C′B,請你通過計算說明點D′在雙曲線上;
(3)請你畫出△AD′C,并求出它的面積.
【答案】解:(1)∵點C(3,3)在反比例函數(shù)的圖象上,∴。∴m=9。
∴反比例函數(shù)的解析式為。
(2)過C作CE⊥x軸于點E,過D作DF⊥x軸于點F,則△CBE≌△DAF,
∴AF=BE,DF=CE。
∵A(﹣4,0),B(2,0),C(3,3),
∴DF=CE=3,OA=4,OE=3,OB=2。
∴。
∴D(﹣3,3)。
∵點D′與點D關于x軸對稱,∴D′(﹣3,﹣3)。
把x=﹣3代入得,y=﹣3,∴點D′在雙曲線上。
(3)作圖如下:
∵C(3,3),D′(﹣3,﹣3),∴點C和點D′關于原點O中心對稱。
∴D′O=CO=D′C。
∴S△AD′C=2S△AOC=2×AOCE=2××4×3=12。
【解析】
試題(1)把點C(3,3)代入反比例函數(shù),求出m,即可求出解析式。
(2)過C作CE⊥x軸于點E,過D作DF⊥x軸于點F,則△CBE≌△DAF,根據(jù)線段之間的數(shù)量關系進一步求出點D的坐標,再點D′與點D關于x軸對稱,求出D′坐標,進而判斷點D′是不是在雙曲線。
(3)根據(jù)C(3,3),D′(﹣3,﹣3)得到點C和點D′關于原點O中心對稱,進一步得出D′O=CO=D′C,由S△AD′C=2S△AOC=2×AOCE求出面積的值。
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=8,點E是BC邊上一點,連接AE,把∠B沿AE折疊,使點B落在點B′處,當△CEB′為直角三角形時,BE的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,O為坐標原點,點A(a,a)在第一象限,點B(0,b),點C(3,0),
其中0<b<3,∠BAC=90°.
(1)根據(jù)題意,畫出示意圖;
(2)若a=2,求OB的長;
(3)已知點D在線段OB的上,若 ,四邊形OCAD的面積為3,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+5的圖象與反比例函數(shù)(k≠0)在第一象限的圖象交于A(1,n)和B兩點.
(1)求反比例函數(shù)的解析式及點B坐標;
(2)在第一象限內(nèi),當一次函數(shù)y=-x+5的值大于反比例函數(shù)(k≠0)的值時,寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在平面直角坐標系中,A(m,0)、B(0,n),m、n滿足(m-n)2+|m-|=0.C為AB的中點,P是線段AB上一動點,D是x軸正半軸上一點,且PO=PD,DE⊥AB于E.
(1)求∠OAB的度數(shù);
(2)設AB=4,當點P運動時,PE的值是否變化?若變化,說明理由;若不變,請求PE的值;
(3)設AB=4,若∠OPD=45°,求點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:①韋達定理:設一元二次方程ax2+bx+c=0(且a≠0)中,兩根有如下關系:,.
②已知p2﹣p﹣1=0,1﹣q﹣q2=0,且pq≠1,求 的值.
解:由p2﹣p﹣1=0及1﹣q﹣q2=0,可知p≠0,q≠0.
又∵pq≠1,∴ ;
∴1﹣q﹣q2=0可變形為的特征.
所以p與是方程x2﹣x﹣1=0的兩個不相等的實數(shù)根.
則p+=1,
∴=1.
根據(jù)閱讀材料所提供的方法,完成下面的解答.
已知:2m2﹣5m﹣1=0,,且m≠n.求: 的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于三個數(shù)a,b,c,用max{a,b,c}表示這三個數(shù)中最大數(shù),例如:max{-2,1,0}=1,max
解決問題:
(1)填空:max{1,2,3}=______,如果max{3,4,2x-6}=2x-6,則x的取值范圍為______;
(2)如果max{2,x+2,-3x-7}=5,求x的值;
(3)如圖,在同一坐標系中畫出了三個一次函數(shù)的圖象:y=-x-3,y=x-1和y=3x-3請觀察這三個函數(shù)的圖象,
①在圖中畫出max{-x-3,x-1,3x-3}對應的圖象(加粗);
②max{-x-3,x-1,3x-3}的最小值為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是某同學對多項式(x2﹣4x+2)(x2﹣4x+6)+4進行因式分解的過程
解:設x2﹣4x=y,
原式=(y+2)(y+6)+4。ǖ谝徊剑
=y2+8y+16。ǖ诙剑
=(y+4)2(第三步)
=(x2﹣4x+4)2(第四步)
(1)該同學第二步到第三步運用了因式分解的 (填序號).
A.提取公因式 B.平方差公式
C.兩數(shù)和的完全平方公式 D.兩數(shù)差的完全平方公式
(2)該同學在第四步將y用所設中的x的代數(shù)式代換,得到因式分解的最后結(jié)果.這個結(jié)果是否分解到最后? .(填“是”或“否”)如果否,直接寫出最后的結(jié)果 .
(3)請你模仿以上方法嘗試對多項式(x2﹣2x)(x2﹣2x+2)+1進行因式分解.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在所給正方形網(wǎng)格圖中完成下列各題:(用直尺畫圖,保留痕跡)
(1)求出格點△ABC(頂點均在格點上)的面積;
(2)畫出格點△ABC關于直線DE對稱的;
(3)在DE上畫出點Q,使△QAB的周長最小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com