【題目】如圖,在平面直角坐標系xOy中,直線y=x2與雙曲線y=(k≠0)相交于A,B兩點,且點A的橫坐標是3

(1)k的值;

(2)過點P(0,n)作直線,使直線與x軸平行,直線與直線y=x2交于點M,與雙曲線y= (k≠0)交于點N,若點MN右邊,求n的取值范圍.

【答案】(1) k=3;(2) n1或﹣3n0

【解析】

1)把點A的橫坐標代入一次函數(shù)解析式求出縱坐標,確定出點A的坐標,代入反比例解析式求出k的值即可;
2)根據(jù)題意畫出直線,根據(jù)圖象確定出點MN右邊時n的取值范圍即可.

解:(1)令x=3,代入y=x2,則y=1

A(3,1)

∵點A(3,1)在雙曲線y=(k≠0)上,

k=3;

2)聯(lián)立得:

解得,即B(1,﹣3)

如圖所示:

當點MN右邊時,n的取值范圍是n1或﹣3n0

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】(感知)小亮遇到了這樣一道題:已知如圖在中,上,的延長上,于點,且,求證:.

小亮仔細分析了題中的已知條件后,如圖②過點作,進而解決了該問題.(不需要證明)

(探究)如圖③,在四邊形中,,邊的中點,的延長線交于點,試探究線段之間的數(shù)量關(guān)系,并證明你的結(jié)論.

(應用)如圖③,在正方形中,邊的中點,、分別為邊上的點,若1,∠90°,則的長為 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,∠ACB=90°AC=2,BC=4CDABC的中線,E是邊BC上一動點,將BED沿ED折疊,點B落在點F處,EF交線段CD于點G,當DFG是直角三角形時,則CE=__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若一個三角形一條邊的平方等于另兩條邊的乘積,我們把這個三角形叫做比例三角形.

已知是比例三角形,,,請直接寫出所有滿足條件的AC的長;

如圖1,在四邊形ABCD中,,對角線BD平分求證:是比例三角形.

如圖2,在的條件下,當時,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點,其中A點坐標為(﹣1,0),點C0,5),另拋物線經(jīng)過點(1,8),M為它的頂點.

1)求拋物線的解析式;

2)求△MCB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,若將左圖正方形剪成四塊,恰能拼成右圖的矩形,設(shè)a=1,則b=( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線經(jīng)過點A,作ABx軸于點B,將△ABO繞點B逆時針旋轉(zhuǎn)60°,得到△CBD,若點B的坐標為(4,0),則點C的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,等腰RtABC中,∠A90°,點D,E分別在邊AB,AC上,ADAE,連接DC,點M,P,N分別為DEDC,BC的中點.

1)觀察猜想:圖1中,線段PMPN的數(shù)量關(guān)系是   ,位置關(guān)系是   ;

2)探究證明:把ADE繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷PMN的形狀,并說明理由;

3)拓展延伸:把ADE繞點A在平面內(nèi)自由旋轉(zhuǎn),若AD8,AB20,請直接寫出PMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖三角形ABC,BC12,ADBC邊上的高AD10P,N分別是AB,AC邊上的點,Q,MBC上的點,連接PQMNPNADE.求

1)若四邊形PQMN是矩形,且PQPN12.求PQ、PN的長;

2)若四邊形PQMN是矩形,求當矩形PQMN面積最大時,求最大面積和PQ、PN的長.

查看答案和解析>>

同步練習冊答案