【題目】如圖,在平面直角坐標系xOy中,直線y=x﹣2與雙曲線y=(k≠0)相交于A,B兩點,且點A的橫坐標是3.
(1)求k的值;
(2)過點P(0,n)作直線,使直線與x軸平行,直線與直線y=x﹣2交于點M,與雙曲線y= (k≠0)交于點N,若點M在N右邊,求n的取值范圍.
科目:初中數(shù)學 來源: 題型:
【題目】(感知)小亮遇到了這樣一道題:已知如圖在中,在上,在的延長上,交于點,且,求證:.
小亮仔細分析了題中的已知條件后,如圖②過點作交于,進而解決了該問題.(不需要證明)
(探究)如圖③,在四邊形中,,為邊的中點,與的延長線交于點,試探究線段與之間的數(shù)量關(guān)系,并證明你的結(jié)論.
(應用)如圖③,在正方形中,為邊的中點,、分別為,邊上的點,若=1,=,∠=90°,則的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=2,BC=4,CD是△ABC的中線,E是邊BC上一動點,將△BED沿ED折疊,點B落在點F處,EF交線段CD于點G,當△DFG是直角三角形時,則CE=__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若一個三角形一條邊的平方等于另兩條邊的乘積,我們把這個三角形叫做比例三角形.
已知是比例三角形,,,請直接寫出所有滿足條件的AC的長;
如圖1,在四邊形ABCD中,,對角線BD平分,求證:是比例三角形.
如圖2,在的條件下,當時,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點,其中A點坐標為(﹣1,0),點C(0,5),另拋物線經(jīng)過點(1,8),M為它的頂點.
(1)求拋物線的解析式;
(2)求△MCB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線經(jīng)過點A,作AB⊥x軸于點B,將△ABO繞點B逆時針旋轉(zhuǎn)60°,得到△CBD,若點B的坐標為(4,0),則點C的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,等腰Rt△ABC中,∠A=90°,點D,E分別在邊AB,AC上,AD=AE,連接DC,點M,P,N分別為DE,DC,BC的中點.
(1)觀察猜想:圖1中,線段PM與PN的數(shù)量關(guān)系是 ,位置關(guān)系是 ;
(2)探究證明:把△ADE繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;
(3)拓展延伸:把△ADE繞點A在平面內(nèi)自由旋轉(zhuǎn),若AD=8,AB=20,請直接寫出△PMN面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖三角形ABC,BC=12,AD是BC邊上的高AD=10.P,N分別是AB,AC邊上的點,Q,M是BC上的點,連接PQMN,PN交AD于E.求
(1)若四邊形PQMN是矩形,且PQ:PN=1:2.求PQ、PN的長;
(2)若四邊形PQMN是矩形,求當矩形PQMN面積最大時,求最大面積和PQ、PN的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com