【題目】我國漢代數(shù)學家趙爽為了證明勾股定理,創(chuàng)制了一副“弦圖”,后人稱其為“趙爽弦圖”(如圖1).圖2由弦圖變化得到,它是由八個全等的直角三角形拼接而成.記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1 , S2 , S3 , 若S1+S2+S3=10,則S2的值是

【答案】
【解析】解:將四邊形MTKN的面積設(shè)為x,將其余八個全等的三角形面積一個設(shè)為y, ∵正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1 , S2 , S3 , S1+S2+S3=10,
∴得出S1=8y+x,S2=4y+x,S3=x,
∴S1+S2+S3=3x+12y=10,故3x+12y=10,
x+4y=
所以S2=x+4y= ,
故答案為:
根據(jù)圖形的特征得出四邊形MNKT的面積設(shè)為x,將其余八個全等的三角形面積一個設(shè)為y,從而用x,y表示出S1 , S2 , S3 , 得出答案即可.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】實數(shù)mn在數(shù)軸上的位置如圖所示,則下列不等關(guān)系正確的是(

A. nm B. n2m2

C. n0m0 D. | n |<| m |

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個長方形運動場被分隔成、、、個區(qū), 區(qū)是邊長為的正方形, 區(qū)是邊長為的正方形.

(1)列式表示每個區(qū)長方形場地的周長,并將式子化簡;

(2)列式表示整個長方形運動場的周長,并將式子化簡;

(3)如果, ,求整個長方形運動場的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)先化簡,再求值:(2+a)(2﹣a)+a(a﹣5b)+3a5b3÷(﹣a2b)2,其中ab=﹣

(2)若x2+4x﹣4=0,求3(x﹣2)2﹣6(x+1)(x﹣1)的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A在數(shù)軸上對應的數(shù)為a,點B對應的數(shù)為b,且a、b滿足|a+3|+b﹣22=0

1)求AB兩點的對應的數(shù)a、b;

2)點C在數(shù)軸上對應的數(shù)為x,且x是方程2x+1=x8的解.

①求線段BC的長;

②在數(shù)軸上是否存在點P,使PA+PB=BC?求出點P對應的數(shù);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一項工程在招標時,接到甲、乙兩個工程隊的投標書.施工一天,需付甲工程隊工程款1.2萬元,乙工程隊工程款0.5萬元.工程領(lǐng)導小組根據(jù)甲、乙兩隊的投標書測算,有以下方案:

方案(1):甲隊單獨完成這項工程剛好如期完成.

方案(2):乙隊單獨完成這項工程要比規(guī)定的日期多用6天.

方案(3):若甲、乙兩隊合做3天,余下的工程由乙隊單獨做也正好如期完成.

試問:在不耽誤工期的前提下,你覺得哪一種施工方案最節(jié)省工程款,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某居民小區(qū)的一塊寬為2a米,長為b米的長方形空地,為了美化環(huán)境,準備在這塊長方形空地的四個頂點處修建一個半徑為a米的扇形花臺,然后在花臺內(nèi)種花,其余種草.

(1)請分別用含a、b的式子表示種花和種草的面積.(答案保留π)

(2)如果建造花臺及種花費用每平方米需要資金100元,種草每平方米需要資金50元,那么美化這塊空地共需資金多少元?(答案保留π)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形草坪ABCD中,∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m.

(1)判斷∠ADC是否是直角,并說明理由

(2)試求四邊形草坪ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).

(1) 請畫出ABC向左平移5個單位長度后得到的ABC;

(2) 請畫出ABC關(guān)于原點對稱的ABC;

(3) 在軸上求作一點P,使PAB的周長最小,請畫出PAB,并直接寫P的坐標.

查看答案和解析>>

同步練習冊答案