【題目】如圖(單位:cm).等腰直角△ABC以2cm/s的速度沿著直線向正方形移動,直到AB與CD重合.設(shè)x秒時,三角形與正方形重疊部分的面積為ycm2.
⑴寫出y與x的關(guān)系式;
⑵當(dāng)x=3.5時,y是多少;
⑶當(dāng)重疊部分的面積是正方形面積的一半時,三角形移動了多少時間;
⑷正方形邊長改為30cm,等腰直角三角形大小不變,移動到AB與EF重合為止.
①x的取值范圍是 ;
②當(dāng)x滿足 時,y=50;
③寫出當(dāng)15≤x≤20時,y與x的關(guān)系式.
【答案】(1);(2);(3);(4)①;②;
③當(dāng)時,
【解析】
(1)根據(jù)題意可知,三角形與正方形重合部分是個等腰直角三角形,且直角邊都是2x,據(jù)此可得出y、x的函數(shù)關(guān)系式;
(2)可將x的值,代入(1)的函數(shù)關(guān)系式中,即可求得y的值;
(3)將正方形的面積的一半代入(1)的函數(shù)關(guān)系式中,即可求得x的值.
(4)根據(jù)三角形與正方形重疊部分的情況分類討論即可得到答案.
解:(1)因為三角形與正方形重合部分是個等腰直角三角形,且直角邊都是2x,
所以;
(2)在中, 當(dāng)x=3.5時,;
(3)在中 因為當(dāng)y=50時,
所以 x=5秒(負值舍去).
(4)①運動時間的起點為 當(dāng)與重合時,時間
所以的取值范圍是
②如圖,當(dāng) 此時三角形運動在正方形的內(nèi)部,
當(dāng)與重合時,,
當(dāng)與重合時,
③ 當(dāng)時,如圖,記與的交點為,
此時重疊部分的面積是直角梯形的面積,
由題意知:,
當(dāng)時,
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)語句畫圖,并回答問題,如圖,∠AOB內(nèi)有一點P.
(1)過點P畫PC∥OB交OA于點C,畫PD∥OA交OB于點D.
(2)寫出圖中與∠CPD互補的角 .(寫兩個即可)
(3)寫出圖中∠O相等的角 .(寫兩個即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在2016年我縣中小學(xué)經(jīng)典誦讀比賽中,10個參賽單位成績統(tǒng)計如圖所示,對于這10個參賽單位的成績,下列說法中錯誤的是( )
A.眾數(shù)是90
B.平均數(shù)是90
C.中位數(shù)是90
D.極差是15
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,用錘子以相同的力將鐵釘垂直釘入木塊,隨著鐵釘?shù)纳钊,鐵釘所受的阻力也越來越大.當(dāng)鐵釘未進入木塊部分長度足夠時,每次釘入木塊的鐵釘長度是前一次的,已知這個鐵釘被敲擊3次后全部進入木塊(木塊足夠厚),且第一次敲擊后,鐵釘進入木塊的長度是a cm,若鐵釘總長度為6cm,則a的取值范圍是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩個半徑相等的直角扇形的圓心分別在對方的圓弧上,半徑AE,CF交于點G,半徑BE,CD交于點H,且點C是 的中點,若扇形的半徑為3,則圖中陰影部分的面積等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E是對角線BD上的一點,過點C作CF∥DB,且CF=DE,連接AE,BF,EF.
(1)求證:△ADE≌△BCF;
(2)若∠ABE+∠BFC=180°,則四邊形ABFE是什么特殊四邊形?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在一個半圓形的花園的周邊散步,如圖1,小明從圓心O出發(fā),按圖中箭頭所示的方向,依次勻速走完下列三條線路:(1)線段OA;(2)半圓弧AB;(3)線段BO后,回到出發(fā)點.小明離出發(fā)點的距離S(小明所在位置與O點之間線段的長度)與時間t之間的圖象如圖2所示,請據(jù)圖回答下列問題(圓周率π的值取3):
(1)請直接寫出:花園的半徑是 米,小明的速度是 米/分,a= ;
(2)若沿途只有一處小明遇到了一位同學(xué)停下來交談了2分鐘,并且小明在遇到同學(xué)的前后,始終保持速度不變,請你求出:
①小明遇到同學(xué)的地方離出發(fā)點的距離;
②小明返回起點O的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每年的月日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購買臺節(jié)省能源的新設(shè)備,現(xiàn)有甲乙兩種型號的設(shè)備可供選購,經(jīng)調(diào)查:購買臺甲型設(shè)備比購買臺乙型設(shè)備多花萬元,購買臺甲型設(shè)備比購買臺乙型設(shè)備少花萬元.
(1)求甲乙兩種型號設(shè)備的價格;
(2)該公司決定購買甲型設(shè)備不少于臺,預(yù)算購買節(jié)省能源的新設(shè)備的資金不超過萬元,你認為該公司有那幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BA1和CA1分別是△ABC的內(nèi)角平分線和外角平分線,BA2是∠A1BD的角平分線,CA2是∠A1CD的角平分線,BA3是∠A2BD的角平分線,CA3是∠A2CD的角平分線,若∠A1=α,則∠A2018為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com