【題目】如圖,是等邊三角形,分別是邊上的點(diǎn),且,且交于點(diǎn),且,垂足為

(1)求證: ;

(2),求的長(zhǎng)度.

【答案】1)證明見(jiàn)解析;(22

【解析】

1)證明△ACE≌△CBFSAS),即可證得結(jié)論;
2)利用由(1)知∠ACE=CBF,求出∠BPE=60°,又EGBF,即∠PGE=90°,得到∠GEP=30°,根據(jù)在直角三角形中,30°所對(duì)的直角邊等于斜邊的一半即可求得答案.

∵△ABC為等邊三角形,
AC =BC,∠A=BCF=60°,
在△ACE和△CBF中,,

∴△ACE≌△CBFSAS),
∴∠ACE=CBF;

2)由(1)知∠ACE=CBF,
又∠ACE +BCE=ACB=60°,
∴∠CBF +BCE =60°,
∵∠CBF +BCE =BPE,
∴∠BPE=60°,
EGBF,即∠PGE=90°,
∴∠GEP=30°,
∴在RtBCE中,

PE=2PG=2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的直徑,點(diǎn)上的一點(diǎn),在的延長(zhǎng)線上取點(diǎn),使,交于點(diǎn),于點(diǎn)

求證:(1)的切線;(2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC中,ABC=90°

(1)尺規(guī)作圖:按下列要求完成作圖(保留作圖痕跡,請(qǐng)標(biāo)明字母)

①作線段AC的垂直平分線l,交AC于點(diǎn)O;

②連接BO并延長(zhǎng),在BO的延長(zhǎng)線上截取OD,使得OD=OB;

③連接DA、DC

(2)判斷四邊形ABCD的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形ABCD中,ECD上一點(diǎn),FBC延長(zhǎng)線上一點(diǎn),且CECF.

(1)求證:△BCE≌△DCF;

(2)若∠FDC30°,求∠BEF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過(guò)O作直線MNBC,設(shè)MN交∠ACB的平分線于點(diǎn)E,交∠ACB的外角平分線于點(diǎn)F.

(1)探究線段OEOF的數(shù)量關(guān)系并加以證明;

(2)當(dāng)點(diǎn)O運(yùn)動(dòng)到何處,且ABC滿足什么條件時(shí),四邊形AECF是正方形?并說(shuō)明理由;

(3)當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)時(shí),四邊形BCFE可能是菱形嗎?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知二次函數(shù)經(jīng)過(guò)點(diǎn)B30),C0,3),D4-5

1求拋物線的解析式;

2ABC的面積;

3P是拋物線上一點(diǎn)SABP=SABC,這樣的點(diǎn)P有幾個(gè)請(qǐng)直接寫(xiě)出它們的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)圖象的頂點(diǎn)在原點(diǎn),對(duì)稱軸為軸.一次函數(shù)的圖象與二次函數(shù)的圖象交于,兩點(diǎn)(的左側(cè)),且點(diǎn)坐標(biāo)為.平行于軸的直線過(guò)點(diǎn).

求一次函數(shù)與二次函數(shù)的解析式;

判斷以線段為直徑的圓與直線的位置關(guān)系,并給出證明;

把二次函數(shù)的圖象向右平移個(gè)單位,再向下平移個(gè)單位,二次函數(shù)的圖象與軸交于,兩點(diǎn),一次函數(shù)圖象交軸于點(diǎn).當(dāng)為何值時(shí),過(guò),三點(diǎn)的圓的面積最小?最小面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是菱形的對(duì)角線,分別是邊的中點(diǎn),連接,則下列結(jié)論錯(cuò)誤的是( )

A. B. C. 四邊形是菱形D. 四邊形是菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線軸交于點(diǎn),與軸交于點(diǎn) ,與直線相交于點(diǎn) ,

1)求直線 的函數(shù)表達(dá)式;

2)求 的面積;

3)在 軸上是否存在一點(diǎn) ,使是等腰三角形.若不存在,請(qǐng)說(shuō)明理由;若存在,請(qǐng)直接寫(xiě)出點(diǎn) 的坐標(biāo)

查看答案和解析>>

同步練習(xí)冊(cè)答案