【題目】如圖,在 ABCD中,∠DAB=60°,點E,F(xiàn)分別在CD,AB的延長線上,且AE=AD,CF=CB.

(1)求證:四邊形AFCE是平行四邊形.

(2)若去掉已知條件的“∠DAB=60°,上述的結(jié)論還成立嗎 ”若成立,請寫出證明過程;若不成立,請說明理由.

【答案】(1)證明見解析(2)成立

【解析】(1)由已知條件可得△AED,△CFB是正三角形,可得∠AEC=∠BFC=60°,∠EAF=∠FCE=120°,所以四邊形AFCE是平行四邊形.

(2)上述結(jié)論還成立,可以證明△ADE≌△CBF,可得∠AEC=∠BFC,∠EAF=∠FCE,所以四邊形AFCE是平行四邊形.

解:(1)證明:∵四邊形ABCD是平行四邊形,

∴DC∥AB,∠DCB=∠DAB=60°.

∴∠ADE=∠CBF=60°.

∵AE=AD,CF=CB,

∴△AED,△CFB是正三角形.

∴∠AEC=∠BFC=60°,∠EAF=∠FCE=120°.

∴四邊形AFCE是平行四邊形.

(2)解:上述結(jié)論還成立.

證明:∵四邊形ABCD是平行四邊形,

∴DC∥AB,∠CDA=∠CBA,∠DCB=∠DAB,AD=BC,DC=AB.

∴∠ADE=∠CBF.

∵AE=AD,CF=CB,

∴∠AED=∠ADE,∠CFB=∠CBF.

∴∠AED=∠CFB.

又∵AD=BC,

在△ADE和△CBF中.

∠ADE=∠CBF,∠AED=∠CFB,AD=BC,

∴△ADE≌△CBF(AAS).

∴∠AED=∠BFC,∠EAD=∠FCB.

又∵∠DAB=∠BCD,

∴∠EAF=∠FCE.

∴四邊形EAFC是平行四邊形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在ABCD中,延長DA到點E,延長BC到點F,使得AE=CF,連接EF,分別交AB,CD于點M,N,連接DM,BN.

(1)求證:△AEM≌△CFN;

(2)求證:四邊形BMDN是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,三角形ABC三個頂點A,BC的坐標(biāo)分別為A1,2),B43),C3,1).

1)三角形A1B1C1向右平移4個單位長度,再向下平移3個單位長度,恰好得到三角形ABC,試寫出三角形A1B1C1三個頂點的坐標(biāo).

2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】畫圖并計算:已知線段AB=2 cm,延長線段AB至點C,使得2BC=AB,再反向延長AC至點D,使得AD=AC.

(1)準(zhǔn)確地畫出圖形,并標(biāo)出相應(yīng)的字母;

(2)線段DC的中點是哪個?線段AB的長是線段DC長的幾分之幾?

(3)求出線段BD的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在圖(1)中,A1、B1、C1分別是△ABC的邊BC、CA、AB上的點,且A1C1∥AC,A1B1∥AB,B1C1∥BC,在圖(2)中,A2、B2、C2分別是△A1B1C1的邊B1C1、C1A1、A1B1上的點,且A2C2∥A1C1,A2B2∥A1B1,B2C2∥B1C1,…,按此規(guī)律,則第n個圖形中平行四邊形的個數(shù)共有__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為1cm,圓心角為90°的扇形OAB中,分別以O(shè)A、OB為直徑作半圓,則圖中陰影部分的面積為(
A.πcm2
B. πcm2
C. cm2
D. cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角ABC中,點OAC邊上的一個動點,過O作直線MNBC,設(shè)MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F,下列結(jié)論中正確的是( 。

OE=OF;CE=CF;③若CE=12,CF=5,則OC的長為6;④當(dāng)AO=CO時,四邊形AECF是矩形.

A. ①② B. ①④ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是邊長為6的等邊三角形,P是AC邊上一動點,由A向C運動(與A、C不重合),Q是CB延長線上一點,與點P同時以相同的速度由B向CB延長線方向運動(Q不與B重合),過P作PE⊥AB于E,連接PQ交AB于D.
(1)當(dāng)∠BQD=30°時,求AP的長;
(2)當(dāng)運動過程中線段ED的長是否發(fā)生變化?如果不變,求出線段ED的長;如果變化請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中,點A1,A2,A3,A4C1,C2C3,C4分別ABCD的五等分點,點B1,B2D1,D2分別是BCDA的三等分點,已知四邊形A4B2C4D2的面積為1,則平行四邊形ABCD面積為(  )

A. 2 B. C. D. 15

查看答案和解析>>

同步練習(xí)冊答案