【題目】△ABC中,若∠C-∠B=∠A,則△ABC的外角中最小的角是______(填銳角、直角鈍角).

【答案】直角

【解析】∵∠CB=A,

∴∠C=A+B,

∵∠A+B+C=180°,

2C=180°,

∴∠C=90°,

ABC的外角中最小的角是直角,

故答案為直角.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,G是BD上一點(diǎn),連接CG并延長(zhǎng)交BA的延長(zhǎng)線于點(diǎn)F,交AD于點(diǎn)E.

(1)求證:AG=CG.

(2)求證:AG2=GEGF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,BC=AC∠C=90°,直角頂點(diǎn)Cx軸上,一銳角頂點(diǎn)By軸上.

1)如圖AD于垂直x軸,垂足為點(diǎn)D.點(diǎn)C坐標(biāo)是(﹣1,0),點(diǎn)A的坐標(biāo)是(﹣3,1),求點(diǎn)B的坐標(biāo).

2)如圖,直角邊BC在兩坐標(biāo)軸上滑動(dòng),若y軸恰好平分∠ABC,ACy軸交于點(diǎn)D,過(guò)點(diǎn)AAE⊥y軸于E,請(qǐng)猜想BDAE有怎樣的數(shù)量關(guān)系,并證明你的猜想.

3)如圖,直角邊BC在兩坐標(biāo)軸上滑動(dòng),使點(diǎn)A在第四象限內(nèi),過(guò)A點(diǎn)作AF⊥y軸于F,在滑動(dòng)的過(guò)程中,請(qǐng)猜想OC,AF,OB之間有怎樣的關(guān)系(直接寫(xiě)出結(jié)論,不需要證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)A在數(shù)軸上距離原點(diǎn)2個(gè)單位長(zhǎng)度,將點(diǎn)沿著數(shù)軸向右移動(dòng)3個(gè)單位長(zhǎng)度得到點(diǎn)B,則點(diǎn)B表示的數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算

(1)﹣22÷|6﹣10|﹣3×(﹣1)2018

(2)﹣14﹣(1﹣0.5)×[4﹣(﹣2)3]

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】月球的直徑約為3500000米,將3500000這個(gè)數(shù)用科學(xué)記數(shù)法表示應(yīng)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知任意三角形的三邊長(zhǎng),如何求三角形面積?

古希臘的幾何學(xué)家海倫解決了這個(gè)問(wèn)題,在他的著作《度量論》一書(shū)中給出了計(jì)算公式﹣﹣海倫公式S=(其中a,b,c是三角形的三邊長(zhǎng),p=,S為三角形的面積),并給出了證明

例如:在△ABC中,a=3,b=4,c=5,那么它的面積可以這樣計(jì)算:

∵a=3,b=4,c=5

∴p==6

∴S===6

事實(shí)上,對(duì)于已知三角形的三邊長(zhǎng)求三角形面積的問(wèn)題,還可用我國(guó)南宋時(shí)期數(shù)學(xué)家秦九韶提出的秦九韶公式等方法解決.

如圖,在△ABC中,BC=5,AC=6,AB=9

(1)用海倫公式求△ABC的面積;

(2)求△ABC的內(nèi)切圓半徑r.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于ABCD的敘述,正確的是(  )

A. ACBD,則ABCD是正方形

B. ACBD,則ABCD是正方形

C. ABBC,則ABCD是菱形

D. ABBC,則ABCD是菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,D、E為⊙O上位于AB異側(cè)的兩點(diǎn),連接BD并延長(zhǎng)至點(diǎn)C,使得CD=BD,連接AC交⊙O于點(diǎn)F,連接AE、DE、DF.

(1)證明:∠E=∠C;

(2)若∠E=55°,求∠BDF的度數(shù);

(3)設(shè)DE交AB于點(diǎn)G,若DF=4,cosB=,E是弧AB的中點(diǎn),求EGED的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案