【題目】如圖,在AC⊥BC,過點C的直線MN∥AB,D為AB邊上一點,且AD=4,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.
(1)求CE的長;
(2)當D在AB中點時,四邊形BECD是什么特殊四邊形?說明你的理由;
【答案】(1)CE的長是4;
(2)當D在AB中點時,四邊形BECD是菱形,理由見解析.
【解析】試題分析:(1)先求出四邊形ADEC是平行四邊形,根據平行四邊形的性質推出即可;
(2)求出四邊形BECD是平行四邊形,求出CD=BD,根據菱形的判定推出即可.
試題解析:(1)∵DE⊥BC,∴
∵,∴
∴AC∥DE
又∵MN∥AB,
即CE∥AD
∴四邊形ADEC是平行四邊形.
∴CE=AD
∵AD=4
∴CE=4
(2)四邊形BECD是菱形,理由:
∵D為AB中點,
∴AD=BD
又由(1)得CE=AD,
∴BD=CE,
又∵BD∥CE,
∴四邊形BECD是平行四邊形
∵,D為AB中點,
∴CD=BD
∴四邊形BECD是菱形.
科目:初中數學 來源: 題型:
【題目】為了了解青少年形體情況,現(xiàn)隨機抽查了某市若干名初中學生坐姿、站姿、走姿的好壞情況.我們對測評數據作了適當處理(如果一個學生有一種以上不良姿勢,以他最突出的一種作記載),并將統(tǒng)計結果繪制了如下兩幅不完整的統(tǒng)計圖,請你根據圖中所給信息解答下列問題:
(1)請將兩幅統(tǒng)計圖補充完整;
(2)請問這次被抽查形體測評的學生一共是多少人?
(3)如果全市有5萬名初中生,那么全市初中生中,坐姿和站姿不良的學生有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知某小區(qū)的兩幢10層住宅樓間的距離為AC="30" m,由地面向上依次為第1層、第2層、…、第10層,每層高度為3 m.假設某一時刻甲樓在乙樓側面的影長EC=h,太陽光線與水平線的夾角為α .
(1) 用含α的式子表示h(不必指出α的取值范圍);
(2) 當α=30°時,甲樓樓頂B點的影子落在乙樓的第幾層?若α每小時增加15°,從此時起幾小時后甲樓的影子剛好不影響乙樓采光 ?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系內,已知A(2x,3x+1).
(1)點A在x軸下方,在y軸的左側,且到兩坐標軸的距離相等,求x的值;
(2)若x=1,點B在x軸上,且S△OAB=6,求點B的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABD是等腰三角形,AB=AD,將△ABD沿BD翻折得△CBD,點P是線段BD上一點,
(1)如圖1,連接PA、PC,求證:CP=AP;
(2)如圖2,連接PA,若∠BAP=90°時,作∠DPF=45°,線段PF交線段CD于F,求證:AD=AP+DF;
(3)如圖3,∠ABD=30°,連接AP并延長交CD于M,若∠BAM=90°,在BD上取一點Q,且DQ=3BQ,連BM、CQ,當BM= 時,求CQ的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在等邊三角形ABC中,點E在AB上,點D在CB的延長線上,且AE=BD,
(1)當點E為AB的中點時,如圖1,求證:EC=ED;
(2)當點E不是AB的中點時,如圖2,過點E作EF∥BC,求證:△AEF是等邊三角形;
(3)在第(2)小題的條件下,EC與ED還相等嗎,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com