【題目】二次函數(shù)圖象的頂點在原點O,經(jīng)過點A(1,);點F(0,1)在y軸上.直線y=﹣1與y軸交于點H.
(1)求二次函數(shù)的解析式;
(2)點P是(1)中圖象上的點,過點P作x軸的垂線與直線y=﹣1交于點M,求證:FM平分∠OFP;
(3)當△FPM是等邊三角形時,求P點的坐標.
【答案】(1)y=x2;(2)證明見解析;(3)(,3)或(﹣,3).
【解析】
試題(1)根據(jù)題意可設(shè)函數(shù)的解析式為y=ax2,將點A代入函數(shù)解析式,求出a的值,繼而可求得二次函數(shù)的解析式;
(2)過點P作PB⊥y軸于點B,利用勾股定理求出PF,表示出PM,可得PF=PM,∠PFM=∠PMF,結(jié)合平行線的性質(zhì),可得出結(jié)論;
(3)首先可得∠FMH=30°,設(shè)點P的坐標為(x,x2),根據(jù)PF=PM=FM,可得關(guān)于x的方程,求出x的值即可得出答案.
試題解析:(1)∵二次函數(shù)圖象的頂點在原點O,
∴設(shè)二次函數(shù)的解析式為y=ax2,
將點A(1,)代入y=ax2得:a=,
∴二次函數(shù)的解析式為y=x2;
(2)∵點P在拋物線y=x2上,
∴可設(shè)點P的坐標為(x,x2),
過點P作PB⊥y軸于點B,則BF=|x2﹣1|,PB=|x|,
∴Rt△BPF中,
PF==x2+1,
∵PM⊥直線y=﹣1,
∴PM=x2+1,
∴PF=PM,
∴∠PFM=∠PMF,
又∵PM∥y軸,
∴∠MFH=∠PMF,
∴∠PFM=∠MFH,
∴FM平分∠OFP;
(3)當△FPM是等邊三角形時,∠PMF=60°,
∴∠FMH=30°,
在Rt△MFH中,MF=2FH=2×2=4,
∵PF=PM=FM,
∴x2+1=4,
解得:x=±2,
∴x2=×12=3,
∴滿足條件的點P的坐標為(2,3)或(﹣2,3).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P(m,n)是拋物線y=﹣+1上任意一點,l是過點(0,2)且與x軸平行的直線,過點P作直線PH⊥l,垂足為H,PH交x軸于Q.
(1)(探究)填空:當m=0時,OP= ,PH= ;當m=4時,OP= ,PH= .
(2)(證明)對任意m,n,猜想OP與PH的大小關(guān)系,并證明你的猜想.
(3)(應(yīng)用)當OP=OH,且m≠0時,求P點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩車都從A地前往B地,如圖分別表示甲、乙兩車離A地的距離S(千米)與時間t(分鐘)的函數(shù)關(guān)系.已知甲車出發(fā)10分鐘后乙車才出發(fā),甲車中途因故停止行駛一段時間后按原速繼續(xù)駛向B地,最終甲、乙兩車同時到達B地,根據(jù)圖中提供的信息解答下列問題:
(1)甲、乙兩車行駛時的速度分別為多少?
(2)乙車出發(fā)多少分鐘后第一次與甲車相遇?
(3)甲車中途因故障停止行駛的時間為多少分鐘?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.
(1)求二次函數(shù)的表達式;
(2)在y軸上是否存在一點P,使△PBC為等腰三角形.若存在,請求出點P的坐標;
(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當點M到 達點B時,點M、N同時停止運動,問點M、N運動到何處時,△MNB面積最大,試求出最大面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象開口向上,圖象經(jīng)過點(-1,2)和(1,0),且與y
軸相交于負半軸。給出四個結(jié)論:①;②;③;④ ,其中正確結(jié)論的序
號是___________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A、B、C三地在同一直線上,甲、乙兩車分別從A,B兩地相向勻速行駛,甲車先出發(fā)2小時,甲車到達B地后立即調(diào)頭,并將速度提高10%后與乙車同向行駛,乙車到達A地后,繼續(xù)保持原速向遠離B的方向行駛,經(jīng)過一段時間后兩車同時到達C地,設(shè)兩車之間的距離為y(千米),甲行駛的時間x(小時).y與x的關(guān)系如圖所示,則B、C兩地相距_____千米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,破殘的圓形輪片上,弦AB的垂直平分線交弧AB于點C,交弦AB于點D.已知AB=24cm,CD=8cm.
(1)求作此殘片所在的圓(不寫作法,保留作圖痕跡)
(2)求殘片所在圓的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,四邊形ABCD為正方形,點E,F分別在AB與BC上,且∠EDF=45°,易證:AE+CF=EF(不用證明).
(1)如圖②,在四邊形ABCD中,∠ADC=120°,DA=DC,∠DAB=∠BCD=90°,點E,F分別在AB與BC上,且∠EDF=60°.猜想AE,CF與EF之間的數(shù)量關(guān)系,并證明你的猜想;
(2)如圖③,在四邊形ABCD中,∠ADC=2α,DA=DC,∠DAB與∠BCD互補,點E,F分別在AB與BC上,且∠EDF=α,請直接寫出AE,CF與EF之間的數(shù)量關(guān)系,不用證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某辦公樓AB的后面有一建筑物CD,當光線與地面的夾角是22°時,辦公樓在建筑物的墻上留下高3米的影子CE,而當光線與地面夾角是45°時,辦公樓頂A在地面上的影子F與墻角C有27米的距離(B,F,C在一條直線上).
(1)求辦公樓AB的高度;
(2)若要在A,E之間掛一些彩旗,請你求出A,E之間的距離.
(參考數(shù)據(jù):sin22°≈,cos22°≈,tan22°≈)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com