【題目】已知P是⊙O上一點(diǎn),過(guò)點(diǎn)P作不過(guò)圓心的弦PQ,在劣弧PQ和優(yōu)弧PQ上分別有動(dòng)點(diǎn)A、B(不與P,Q重合),連接AP、BP. 若∠APQ=∠BPQ.
(1)如圖1,當(dāng)∠APQ=45°,AP=1,BP=2時(shí),求⊙O的半徑;
(2)如圖2,選接AB,交PQ于點(diǎn)M,點(diǎn)N在線(xiàn)段PM上(不與P、M重合),連接ON、OP,若∠NOP+2∠OPN=90°,探究直線(xiàn)AB與ON的位置關(guān)系,并證明.
【答案】(1) ☉O的半徑是;(2)AB∥ON,證明見(jiàn)解析.
【解析】
(1) 連接AB,根據(jù)題意可AB為直徑,再用勾股定理即可。
(2) 連接, , ,根據(jù)圓周角定理可得,從而證出
, 延長(zhǎng)交☉0于點(diǎn),則有,再根據(jù)三角形內(nèi)角和定理求得=90得證.
解:(1)連接,
在☉0中,
,
是☉0的直徑.
中,
☉0的半徑是
(2)
證明:連接, , ,
在☉0中,
, ,
.
又,
.
在中,, ,
,即
連接,交于點(diǎn)
在☉0中,
延長(zhǎng)交☉0于點(diǎn),則有
,
又:,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將△ABO沿x軸向右滾動(dòng)到△AB1C1的位置,再到△A1B1C2的位置……依次進(jìn)行下去,若已知點(diǎn)A(4,0),B(0,3),則點(diǎn)C100的坐標(biāo)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1表示的是某手機(jī)商店2018年7~12月各月銷(xiāo)售總額的統(tǒng)計(jì)圖,如圖2表示的是該商店“華為品牌”手機(jī)各月占商店銷(xiāo)售總額的百分比統(tǒng)計(jì)圖。已知7月份“華為品牌”手機(jī)的月銷(xiāo)售額為12萬(wàn)元,觀察如圖1、如圖2,解析下列問(wèn)題:
(1)求該手機(jī)商店7月份的銷(xiāo)售總額。
(2)小明觀察圖2認(rèn)為,12月份“華為品牌”手機(jī)的銷(xiāo)售額比11月份減少了。你同意他的看法嗎?請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的一元二次方程x2+3x+m-1=0的兩個(gè)實(shí)數(shù)根分別為x1,x2.
(1)求m的取值范圍.
(2)若2(x1+x2)+ x1x2+10=0.求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,1)、點(diǎn)B(0,1+t)、C(0,1﹣t)(t>0),點(diǎn)P在以D(3,5)為圓心,1為半徑的圓上運(yùn)動(dòng),且始終滿(mǎn)足∠BPC=90°,則t的最小值是______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21,動(dòng)點(diǎn)P從點(diǎn)D出發(fā),沿射線(xiàn)DA的方向以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),在線(xiàn)段CB上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)P,Q分別從點(diǎn)D,C同時(shí)出發(fā),當(dāng)點(diǎn)Q運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)P隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t(秒).
(1)設(shè)△BPQ的面積為S,求S與t之間的函數(shù)關(guān)系式;
(2)當(dāng)t為何值時(shí),以B,P,Q三點(diǎn)為頂點(diǎn)的三角形是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次羽毛球賽中,甲運(yùn)動(dòng)員在離地面米的P點(diǎn)處發(fā)球,球的運(yùn)動(dòng)軌跡PAN看作一個(gè)拋物線(xiàn)的一部分,當(dāng)球運(yùn)動(dòng)到最高點(diǎn)A時(shí),其高度為3米,離甲運(yùn)動(dòng)員站立地點(diǎn)O的水平距離為5米,球網(wǎng)BC離點(diǎn)O的水平距離為6米,以點(diǎn)O為原點(diǎn)建立如圖所示的坐標(biāo)系,乙運(yùn)動(dòng)員站立地點(diǎn)M的坐標(biāo)為(m,0).
(1)求拋物線(xiàn)的解析式(不要求寫(xiě)自變量的取值范圍);
(2)求羽毛球落地點(diǎn)N離球網(wǎng)的水平距離(即NC的長(zhǎng));
(3)乙原地起跳后可接球的最大高度為2.4米,若乙因?yàn)榻忧蚋叨炔粔蚨,?/span>m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)下列條件求函數(shù)的表達(dá)式:
(1)已知變量x,y,t滿(mǎn)足:y=t2﹣2,x=3﹣t.求y關(guān)于x的函數(shù)表達(dá)式;
(2)已知二次函數(shù)y=ax2+bx+c,當(dāng)x=1時(shí),y=2;當(dāng)x=﹣2時(shí),y=﹣7;當(dāng)x=﹣1時(shí),y=0.求這個(gè)二次函數(shù)的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,半徑為10的⊙中,弦,所對(duì)的圓心角分別是,,若,,則弦的長(zhǎng)等于( )
A. 18B. 16C. 10D. 8
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com