【題目】如圖,直線y=ax+b與x軸交于點(diǎn)A(4,0),與y軸交于點(diǎn)B(0,﹣2),與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)C(6,m).
(1)求直線和反比例函數(shù)的表達(dá)式;
(2)連接OC,在x軸上找一點(diǎn)P,使△OPC是以OC為腰的等腰三角形,請(qǐng)求出點(diǎn)P的坐標(biāo);
(3)結(jié)合圖象,請(qǐng)直接寫出不等式≥ax+b的解集.
【答案】(1)y=x﹣2;y=;(2)點(diǎn)P1的坐標(biāo)為(,0),點(diǎn)P2的坐標(biāo)為(﹣,0),(12,0);(3)0<x≤6
【解析】
(1)根據(jù)點(diǎn)A,B的坐標(biāo),利用待定系數(shù)法即可求出直線AB的函數(shù)表達(dá)式,利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出點(diǎn)C的坐標(biāo),由點(diǎn)C的坐標(biāo),利用待定系數(shù)法即可求出反比例函數(shù)的表達(dá)式;
(2)過點(diǎn)C作CD⊥x軸,垂足為D點(diǎn),利用勾股定理看求出OC的長,分OC=OP和CO=CP兩種情況考慮:①當(dāng)OP=OC時(shí),由OC的長可得出OP的長,進(jìn)而可求出點(diǎn)P的坐標(biāo);②當(dāng)CO=CP時(shí),利用等腰三角形的性質(zhì)可得出OD=PD,結(jié)合OD的長可得出OP的長,進(jìn)而可得出點(diǎn)P的坐標(biāo);
(3)觀察圖形,由兩函數(shù)圖象的上下位置關(guān)系,即可求出不等式≥ax+b的解集.
解:(1)將A(4,0),B(0,﹣2)代入y=ax+b,得:
,解得:,
∴直線AB的函數(shù)表達(dá)式為y=x﹣2.
當(dāng)x=6時(shí),y=x﹣2=1,
∴點(diǎn)C的坐標(biāo)為(6,1).
將C(6,1)代入y=,得:1=,
解得:k=6,
∴反比例函數(shù)的表達(dá)式為y=.
(2)過點(diǎn)C作CD⊥x軸,垂足為D點(diǎn),則OD=6,CD=1,
∴OC=.
∵OC為腰,
∴分兩種情況考慮,如圖1所示:
①當(dāng)OP=OC時(shí),∵OC=,
∴OP=,
∴點(diǎn)P1的坐標(biāo)為(,0),點(diǎn)P2的坐標(biāo)為(﹣,0);
②當(dāng)CO=CP時(shí),DP=DO=6,
∴OP=2OD=12,
∴點(diǎn)P3的坐標(biāo)為(12,0).
(3)觀察函數(shù)圖象,可知:當(dāng)0<x<6時(shí),反比例函數(shù)y=的圖象在直線y=x﹣2的上方,
∴不等式≥ax+b的解集為0<x≤6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A是拋物線y=ax2+bx+c的頂點(diǎn),點(diǎn)B(0,2)是拋物線與y軸的交點(diǎn),直線BC平行于x軸,交拋物線于點(diǎn)C,D為x軸上任意一點(diǎn),若S△ABC=3,S△BCD=2,則點(diǎn)A的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,動(dòng)點(diǎn)M從點(diǎn)A出發(fā),沿A→B→C方向運(yùn)動(dòng),當(dāng)點(diǎn)M到達(dá)點(diǎn)C時(shí)停止運(yùn)動(dòng),過點(diǎn)M作MN⊥AM交CD于點(diǎn)N,設(shè)點(diǎn)M的運(yùn)動(dòng)路程為x,CN=y,圖2表示的是y與x的函數(shù)關(guān)系的大致圖象,則矩形ABCD的面積是( 。
A.20B.18C.10D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在矩形ABCD中,AD=8,CD=4,點(diǎn)E從點(diǎn)D出發(fā),沿線段DA以每秒1個(gè)單位長的速度向點(diǎn)A方向移動(dòng),同時(shí)點(diǎn)F從點(diǎn)C出發(fā),沿射線CD方向以每秒2個(gè)單位長的速度移動(dòng),當(dāng)B,E,F三點(diǎn)共線時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)E移動(dòng)的時(shí)間為t(秒).
(1)求當(dāng)t為何值時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng);
(2)設(shè)四邊形BCFE的面積為S,求S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;
(3)求當(dāng)t為何值時(shí),以E,F,C三點(diǎn)為頂點(diǎn)的三角形是等腰三角形;
(4)求當(dāng)t為何值時(shí),∠BEC=∠BFC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】十三五”以來,黨中央,國務(wù)院不斷加大脫貧攻堅(jiān)的支持決策力度,并出臺(tái)配套文件,國家機(jī)關(guān)各部門也出臺(tái)多項(xiàng)政策文件或?qū)嵤┓桨福硢挝徽J(rèn)真分析被幫扶人各種情況后,建議被幫扶人大力推進(jìn)特色產(chǎn)業(yè),大量栽種甜橙;同時(shí)搭建電商運(yùn)營服務(wù)平臺(tái),開設(shè)網(wǎng)店銷售農(nóng)產(chǎn)品橙.豐收后,將一批甜橙采取現(xiàn)場銷售和網(wǎng)絡(luò)銷售相結(jié)合進(jìn)行試銷,統(tǒng)計(jì)后發(fā)現(xiàn):同樣多的甜橙,現(xiàn)場銷售可獲利800元,網(wǎng)絡(luò)銷售則可獲利1000元,網(wǎng)絡(luò)銷售比現(xiàn)場銷售每件多獲利5元
(1)現(xiàn)場銷售和網(wǎng)絡(luò)銷售每件分別多少元?
(2)根據(jù)甜橙試銷情況分析,現(xiàn)場銷售量a(件)和網(wǎng)絡(luò)銷售量b(件)滿足如下關(guān)系式:b=﹣a2+12a﹣200.求a為何值時(shí),農(nóng)戶銷售甜橙獲得的總利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,城市在城市正東方向,現(xiàn)計(jì)劃在兩城市間修建一條高速鐵路(即線段),經(jīng)測量,森林保護(hù)區(qū)的中心在城市的北偏東方向上,在線段上距城市的處測得在北偏東方向上,已知森林保護(hù)區(qū)是以點(diǎn)為圓心,為半徑的圓形區(qū)域,請(qǐng)問計(jì)劃修建的這條高速鐵路是否穿越保護(hù)區(qū),為什么?
(參考數(shù)據(jù): )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,連接BD,點(diǎn)E在BA的延長線上,連接EC,分別交AD、BD于點(diǎn)F、點(diǎn)G,連接ED并延長交BC的延長線于點(diǎn)H,則下列結(jié)論錯(cuò)誤的是( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某中學(xué)九年級(jí)學(xué)生中考體育成績情況,現(xiàn)從中抽取部分學(xué)生的體育成績進(jìn)行分段(A:50分、B:49~40分、C:39~30分、D:29~0分)統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如圖1、圖2所示.
根據(jù)上面提供的信息,回答下列問題:
(1)本次抽查了 名學(xué)生的體育成績;
(2)補(bǔ)全圖1,求圖2中D分?jǐn)?shù)段所占的圓心角是 度;
(3)已知該校九年級(jí)共有900名學(xué)生,請(qǐng)估計(jì)該校九年級(jí)學(xué)生體育成績達(dá)到40分以上(含40分)的人數(shù)為 人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的直徑AB=10,AC是⊙O的弦,過點(diǎn)C作⊙O的切線DE交AB的延長線于點(diǎn)E,過點(diǎn)A作AD⊥DE,垂足為D,與⊙O交于點(diǎn)F,設(shè)∠DAC,∠CEA的度數(shù)分別是α,β,且0°<α<45°.
(1)求β(用含α的代數(shù)式表示);
(2)連結(jié)OF交AC于點(diǎn)G,若AG=CG,求的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com