分析 (1)根據(jù)折疊得到AD=AC,所以△ADC是等腰三角形;
(2)設(shè)CE=x,利用勾股定理得到方程132-x2=152-(14-x)2解得:x=5,在Rt△AEC中,由勾股定理即可解答;
(3)猜想BC、BD、AE之間的數(shù)量關(guān)系為:BC-BD=2AE.由△ADC是等腰三角形,又∠DAC=90°,得到△ADC是等腰直角三角形又AE是CD邊上的高,所以△AED與△AEC都是等腰直角三角形,即可得到CD=2AE.由BC-BD=CD,即可解答.
解答 解:(1)∵三角形ABC紙片,沿BC邊上的高AE所在的直線翻折,使得點(diǎn)C與BC邊上的點(diǎn)D重合.
∴AD=AC,
∴△ADC是等腰三角形;
故答案為:等腰.
(2)設(shè)CE=x,則BE=14-x,
在Rt△AEC中,由勾股定理得:AE2=AC2-CE2,
∴AE2=132-x2
在Rt△ABE中,由勾股定理得:AE2=AB2-BE2,
∴AE2=152-(14-x)2
∴132-x2=152-(14-x)2
解得:x=5,
在Rt△AEC中,由勾股定理得:$AE=\sqrt{A{C^2}-C{E^2}}=\sqrt{{{13}^2}-{5^2}}=\sqrt{144}=12$.
(3)猜想BC、BD、AE之間的數(shù)量關(guān)系為:BC-BD=2AE.
證明如下:
由(1)得:△ADC是等腰三角形,又∠DAC=90°,
∴△ADC是等腰直角三角形
又AE是CD邊上的高,
∴DE=CE,$∠DAE=∠EAC=\frac{1}{2}∠DAC=\frac{1}{2}×90°=45°$,
∴△AED與△AEC都是等腰直角三角形,
∴DE=AE=EC,即CD=2AE.
∵BC-BD=CD
∴BC-BD=2AE.
點(diǎn)評(píng) 本題考查了等腰三角形的性質(zhì)定理與判定定理、等腰直角三角形的性質(zhì)、勾股定理,解決本題的根據(jù)是判定△ADC是等腰三角形和勾股定理的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
勞動(dòng)時(shí)間(小時(shí)) | 3 | 4 | 5 | 6 |
人數(shù) | 1 | 1 | 2 | 1 |
A. | 中位數(shù)是5,平均數(shù)是3.6 | B. | 眾數(shù)是5,平均數(shù)是4.6 | ||
C. | 中位數(shù)是4,平均數(shù)是3.6 | D. | 眾數(shù)是2,平均數(shù)是4.6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 3個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com