【題目】下列下列命題是真命題的是( )
A. 過一點有且只有一條直線與已知直線垂直
B. 相等的兩個角一定是對頂角
C. 將一根細木條固定在墻上,只需要一根釘子
D. 同角的余角相等
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,O為AC的中點,過點O的直線分別與AB,CD交于點E,F,連接BF交AC于點M,連接DE,BO.若∠COB=60°,FO=FC,則下列結(jié)論:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四邊形EBFD是菱形;④MB∶OE=3∶2.其中正確結(jié)論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,延長⊙O的直徑AB至點C,使得BC=AB,點P是⊙O上半部分的一個動點(點P不與A、B重合),連結(jié)OP,CP.
(1)∠C的最大度數(shù)為 ;
(2)當⊙O的半徑為3時,△OPC的面積有沒有最大值?若有,說明原因并求出最大值;若沒有,請說明理由;
(3)如圖2,延長PO交⊙O于點D,連結(jié)DB,當CP=DB時,求證:CP是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有長為24m的籬笆,圍成中間隔有一道籬笆的長方形的花圃,且花圃的長可借用一段墻體(墻體的最大可用長度a=10m).
(1)如果所圍成的花圃的面積為45m2,試求寬AB的長;
(2)按題目的設(shè)計要求,能圍成面積比45m2更大的花圃嗎?如果能,請求出最大面積,并說明圍法;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長是4,∠DAC的角平分線交DC于點E,點P、Q分別是邊AD和AE上的動點(兩動點不重合).
(1)PQ+DQ的最小值是 .
(2)說出PQ+DQ取得最小值時,點P、Q的位置,并在圖中畫出;
(3)請對(2)中你所給的結(jié)論進行證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1是一個長為2m、寬為2n的長方形,沿圖中虛線用剪刀均分成四塊小長方形,然后按圖2的形狀拼成一個正方形.
(1)請寫出圖2中陰影部分的面積;
(2)觀察圖2你能寫出下列三個代數(shù)式之間的等量關(guān)系嗎?
代數(shù)式:(m+n)2, (m﹣n)2, mn;
(3)根據(jù)(2)中的等量關(guān)系,解決如下問題:若a+b=7,ab=5,求(a﹣b)2的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】月初,明斯克航母告別鹽田,據(jù)不完全估算,16年間累計接待游客11000000人次,11000000用科學記數(shù)法表示是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB⊥AC,AB=1,BC= .對角線AC,BD相交于點O,將直線AC繞點O順時針旋轉(zhuǎn),分別交BC,AD于點E,F(xiàn).
(1)證明:當旋轉(zhuǎn)角為90°時,四邊形ABEF是平行四邊形;
(2)試說明在旋轉(zhuǎn)過程中,線段AF與EC總保持相等;
(3)在旋轉(zhuǎn)過程中,四邊形BEDF可能是菱形嗎?如果不能,請說明理由;如果能,說明理由并求出此時AC繞點O順時針旋轉(zhuǎn)的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com