【題目】榮昌公司要將本公司100噸貨物運(yùn)往某地銷售,經(jīng)與春晨運(yùn)輸公司協(xié)商,計(jì)劃租用甲,乙兩種型號(hào)的汽車共6輛,用這6輛汽車一次將貨物全部運(yùn)走,其中每輛甲型汽車最多能裝該種貨物16噸,每輛乙型汽車最多能裝該種貨物18噸.已知租用1輛甲型汽車和2輛乙型汽車共需費(fèi)用2500元;租用2輛甲型汽車和1輛乙型汽車共需費(fèi)用2450元,且同一種型號(hào)汽車每輛租車費(fèi)用相同.
(1)求租用一輛甲型汽車,一輛乙型汽車的費(fèi)用分別是多少元?
(2)若榮昌公司計(jì)劃此次租車費(fèi)用不超過5000元.通過計(jì)算求出該公司有幾種租車方案?請(qǐng)你設(shè)計(jì)出來,并求出最低的租車費(fèi)用.
(3)該商業(yè)公司生產(chǎn)的此時(shí)令商品每件成本為15元,經(jīng)過市場(chǎng)調(diào)研發(fā)現(xiàn),這種商品在未來20天內(nèi)的日銷量m(件)與時(shí)間t(天)的函數(shù)關(guān)系:m=﹣2t+100;該商品每天的價(jià)格y(元/件)與時(shí)間t(天)的函數(shù)關(guān)系為:y=t+20(1≤t≤20),其中t取整數(shù);在實(shí)際銷售的前20天中,該公司決定每銷售一件商品就捐贈(zèng)a元利潤(a<4)給希望工程.公司通過銷售記錄發(fā)現(xiàn),前20天中,每天扣除捐贈(zèng)后的日銷售利潤時(shí)間t(天)的增大而增大(含20天的日銷售利潤和第19天的日銷售利潤相等的情況),求a的最小值.
【答案】(1)租用一輛甲型汽車的費(fèi)用是800元,租用一輛乙型汽車的費(fèi)用是850元;(2)共有三種方案,分別是:方案一:租用甲型汽車2輛,租用乙型汽車4輛;方案二:租用甲汽車3輛,租用乙型汽車3輛;方案三:租用甲型汽車4輛,租用乙型汽車2輛.最低運(yùn)費(fèi)是4900元;(3)a的最小值是.
【解析】
(1)找出等量關(guān)系列出方程組再求解即可.本題的等量關(guān)系為“租用1輛甲型汽車和2輛乙型汽車共需費(fèi)用2500元”和“租用2輛甲型汽車和1輛乙型汽車共需費(fèi)用2450元”;
(2)設(shè)租用甲型汽車z輛,租用乙型汽車(6-z)輛.根據(jù)榮昌公司要將本公司100噸貨物運(yùn)往某地銷售,以及計(jì)劃此次租車費(fèi)用不超過5000元列出不等式組,求解即可;
(3)設(shè)日銷售利潤為w元,根據(jù)w=日銷量m×(售價(jià)一成本-捐贈(zèng)),利用對(duì)稱軸解決問題.
(1)設(shè)租用一輛甲型汽車的費(fèi)用是x元,租用一輛乙型汽車的費(fèi)用是y元.
由題意得,;
解得:,
答:租用一輛甲型汽車的費(fèi)用是800元,租用一輛乙型汽車的費(fèi)用是850元.
(2)設(shè)租用甲型汽車z輛,租用乙型汽車(6-z)輛.
由題意得,
解得2≤z≤4,
由題意知,z為整數(shù),
∴z=2或z=3或z=4,
∴共有3種方案,分別是:
方案一:租用甲型汽車2輛,租用乙型汽車4輛;
方案二:租用甲型汽車3輛,租用乙型汽車3輛;
方案三:租用甲型汽車4輛,租用乙型汽車2輛.
方案一的費(fèi)用是800×2+850×4=5000(元);
方案二的費(fèi)用是800×3+850×3=4950(元);
方案三的費(fèi)用是800×4+850×2=4900(元);
∵5000>4950>4900;
∴最低運(yùn)費(fèi)是方案三的費(fèi)用:4900元;
答:共有三種方案,分別是:
方案一:租用甲型汽車2輛,租用乙型汽車4輛;
方案二:租用甲汽車3輛,租用乙型汽車3輛;
方案三:租用甲型汽車4輛,租用乙型汽車2輛.最低運(yùn)費(fèi)是4900元.
(3)設(shè)日銷售利潤為w元,
則w=(-2t+100)(t+20-15-a)=-t2+(2a+15)t+500-100a,
對(duì)稱軸是:t=2a+15,
∵1≤t≤20,且每天扣除捐贈(zèng)后的日銷售利潤時(shí)間t(天)的增大而增大,
當(dāng)x=19與x=20是對(duì)稱點(diǎn)時(shí),t=19.5,
∴2a+15≥19.5,
a≥,
∵a<4,
∴≤a<4,
∴a的最小值是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與x軸交于點(diǎn)A,與y軸交于點(diǎn)C.拋物線經(jīng)過A,C兩點(diǎn),且與x軸交于另一點(diǎn)B(點(diǎn)B在點(diǎn)A右側(cè)).
(1)求拋物線的解析式及點(diǎn)B坐標(biāo);
(2)若點(diǎn)M是線段BC上的一動(dòng)點(diǎn),過點(diǎn)M的直線EF平行y軸交x軸于點(diǎn)F,交拋物線于點(diǎn)E.求ME長(zhǎng)的最大值;
(3)試探究當(dāng)ME取最大值時(shí),在拋物線上、x軸下方是否存在點(diǎn)P,使以M,F(xiàn),B,P為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一條直線上依次有A、B、C三地,自行車愛好者甲、乙兩人同時(shí)分別從A、B兩地出發(fā),沿直線勻速騎向C地.已知甲的速度為20 km/h,設(shè)甲、乙兩人行駛x(h)后,與A地的距離分別為y1 、y2 (km), y1 、y2 與x的函數(shù)關(guān)系如圖所示.
(1)求y2與x的函數(shù)關(guān)系式;
(2)若兩人在出發(fā)時(shí)都配備了通話距離為3km的對(duì)講機(jī),求甲、乙兩人在騎行過程中可以用對(duì)講機(jī)通話的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知等邊三角形ABC,點(diǎn)P為AB的中點(diǎn),點(diǎn)D、E分別為邊AC、BC上的點(diǎn),∠APD+∠BPE=60°.
(1)①若PD⊥AC,PE⊥BC,直接寫出PD、PE的數(shù)量關(guān)系:____;
②如圖1,證明:AP=AD+BE
(2)如圖2,點(diǎn)F、H分別在線段BC、AC上,連接線段PH、PF,若PD⊥PF且PD=PF,HP⊥EP.求∠FHP的度數(shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知港口A東偏南10°方向有一處小島B,一艘貨輪從港口A沿南偏東40°航線出發(fā),行駛80海里到達(dá)C處,此時(shí)觀測(cè)小島B在北偏東60°方向.
(1)求此時(shí)貨輪到小島B的距離.
(2)在小島周圍36海里范圍內(nèi)是暗礁區(qū),此時(shí)輪船向正東方向航行有沒有觸礁危險(xiǎn)?請(qǐng)作出判斷并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點(diǎn)B,與直線l的另一個(gè)交點(diǎn)為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點(diǎn)D在拋物線上,DE∥y軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0<t<4),矩形DFEG的周長(zhǎng)為p,求p與t的函數(shù)關(guān)系式以及p的最大值;
(3)將△AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若△A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“落點(diǎn)”,請(qǐng)直接寫出“落點(diǎn)”的個(gè)數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:
小明是個(gè)愛動(dòng)腦筋的學(xué)生,他在學(xué)習(xí)了二元一次方程組后遇到了這樣一道題目:現(xiàn)有8個(gè)大小相同的長(zhǎng)方形,可拼成如圖1、2所示的圖形,在拼圖②時(shí),中間留下了一個(gè)邊長(zhǎng)為2的小正方形,求每個(gè)小長(zhǎng)方形的面積.
小明設(shè)小長(zhǎng)方形的長(zhǎng)為x,寬為y,觀察圖形得出關(guān)于x、y的二元一次方程組,解出x、y的值,再根據(jù)長(zhǎng)方形的面積公式得出每個(gè)小長(zhǎng)方形的面積.
解決問題:
(1)請(qǐng)按照小明的思路完成上述問題:求每個(gè)小長(zhǎng)方形的面積;
(2)某周末上午,小明在超市幫媽媽買回一袋紙杯,他把紙杯整齊地疊放在一起,如圖3所示.若小明把13個(gè)紙杯整齊疊放在一起時(shí),它的高度約是 cm;
(3)小明進(jìn)行自主拓展學(xué)習(xí)時(shí)遇到了以下這道題目:如圖,長(zhǎng)方形ABCD中放置8個(gè)形狀、大小都相同的小長(zhǎng)方形(尺寸如圖4),求圖中陰影部分的面積,請(qǐng)給出解答過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,AB=AC.
(1)試用直尺和圓規(guī)在AC上找一點(diǎn)D,使AD=BD(不寫作法,但需保留作圖痕跡).
(2)在(1)中,連接BD,若BD=BC,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】家用電滅蚊器的發(fā)熱部分使用了PTC發(fā)熱材料,它的電阻R(kΩ)隨溫度t(℃)(在一定范圍內(nèi))變化的大致圖象如圖所示.通電后,發(fā)熱材料的溫度在由室溫10℃上升到30℃的過程中,電阻與溫度成反例關(guān)系,且在溫度達(dá)到30℃時(shí),電阻下降到最小值;隨后電阻承溫度升高而增加,溫度每上升1℃,電阻增加kΩ.
(1)求R和t之間的關(guān)系式;
(2)家用電滅蚊器在使用過程中,溫度在什么范圍內(nèi)時(shí),發(fā)熱材料的電阻不超過4kΩ.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com