【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)的圖象經(jīng)過正方形ABCD的頂點(diǎn)AB,點(diǎn)C、D的坐標(biāo)分別是(0,﹣1)和(4,﹣3),邊AD,BC分別交x軸于點(diǎn)E、F

1)填空:正方形的邊長為   

2)求反比例函數(shù)y的解析式;

3)若點(diǎn)M是直線BC上一動(dòng)點(diǎn),作MNx軸,交反比例函數(shù)y的圖象于點(diǎn)N,過點(diǎn)MN分別向x軸作垂線,垂足分別為PQ,得到矩形MPQN,設(shè)點(diǎn)M的橫坐標(biāo)為a

①填空:點(diǎn)N的坐標(biāo)為   ;(用含a的代數(shù)式表示)

②填空:若矩形MPQN的面積為6,則點(diǎn)M的橫坐標(biāo)為   

【答案】(1)2;(2)(3)0,

【解析】

(1)由點(diǎn)C,D的坐標(biāo),利用兩點(diǎn)間的距離公式可求出CD的長,此問得解;

(2)過點(diǎn)BBB′⊥y軸于點(diǎn)B′,過點(diǎn)DDD′⊥y軸于點(diǎn)D′,則△BBC≌△DCD(AAS),利用全等三角形的性質(zhì)可求出BB′,CB′,OB′的長度,進(jìn)而可得出點(diǎn)B的坐標(biāo),由點(diǎn)B的坐標(biāo),利用待定系數(shù)法即可求出反比例函數(shù)解析式;

(3)①由點(diǎn)B,C的坐標(biāo),利用待定系數(shù)法可求出直線BC的解析式,由點(diǎn)M的橫坐標(biāo)為a,利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征及反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,可得出點(diǎn)M,N的坐標(biāo);

由點(diǎn)M,N的坐標(biāo),可得出MN,MP的長,由矩形的面積公式結(jié)合矩形MPQN的面積為6,可得出關(guān)于a的方程,解之經(jīng)檢驗(yàn)后即可得出結(jié)論.

(1)∵點(diǎn)C的坐標(biāo)為(0,﹣1),點(diǎn)D的坐標(biāo)為(4,﹣3)

CD,

故答案為:2;

(2)過點(diǎn)BBB′⊥y軸于點(diǎn)B′,過點(diǎn)DDD′⊥y軸于點(diǎn)D′,如圖1所示,

∵四邊形ABCD為正方形,

∴∠BCD90°,BCCD

∵∠BBC+BCB90°,∠BCB+DCD90°,

∴∠BBC=∠DCD,

在△BBC和△DCD中,

,

∴△BBC≌△DCD(AAS)

BB′=CD′=2,CB′=DD′=4,

OB′=CB′﹣OC3,

∴點(diǎn)B的坐標(biāo)為(2,3),

B(2,3)代入y,得:3

k6,

∴反比例函數(shù)的解析式為y;

(3)①設(shè)直線BC的解析式為ymx+n(m0),

B(2,3)C(0,﹣1)代入ymx+n,得:

,解得:,

∴直線BC的解析式為y2x1,

∵點(diǎn)M的橫坐標(biāo)為a

∴點(diǎn)M的坐標(biāo)為(a2a1),

MNx軸,且點(diǎn)N反比例函數(shù)y的圖象上,

∴點(diǎn)N的坐標(biāo)為(,2a1),

故答案為:(,2a1)

∵點(diǎn)M的坐標(biāo)為(a,2a1),點(diǎn)N的坐標(biāo)為(,2a1)

MN|a|,MP|2a1|

∵矩形MPQN的面積為6,

|a||2a1|6,即2a2a02a2a120,

解得:a10,a2,a3,a4,

經(jīng)檢驗(yàn),a10,a3,a4是原方程的解,且符合題意,a2是增根,舍去,

故答案為:0

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CDABH,G為⊙O上一點(diǎn),連接AGCDK,在CD的延長線上取一點(diǎn)E,使EG=EK,EG的延長線交AB的延長線于F

1)求證:EF是⊙O的切線;

2)連接DG,若ACEF時(shí).

①求證:KGD∽△KEG;

②若cosC=,AK=,求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,正方形A1B1C1O1、A2B2C2C1、、AnBnCnCn﹣1按如圖所示的方式放置,其中點(diǎn)A1、A2A3、、An均在一次函數(shù)y=kx+b的圖象上,點(diǎn)C1C2、C3、Cn均在x軸上.若點(diǎn)B1的坐標(biāo)為(1,1),點(diǎn)B2的坐標(biāo)為(3,2),則點(diǎn)An的坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在每個(gè)小正方形的邊長為1的網(wǎng)格中,的頂點(diǎn)A在格點(diǎn)上,B是小正方形邊的中點(diǎn),,,經(jīng)過點(diǎn)AB的圓的圓心在邊AC上.

(Ⅰ)線段AB的長等于_______________;

(Ⅱ)請用無刻度的直尺,在如圖所示的網(wǎng)格中,畫出一個(gè)點(diǎn)P,使其滿足,并簡要說明點(diǎn)P的位置是如何找到的(不要求證明)_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AB繞著點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)120°得到線段AC,點(diǎn)B對應(yīng)點(diǎn)C,在∠BAC的內(nèi)部有一點(diǎn)P,PA8,PB4PC4,則線段AB的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從甲、乙兩名射擊選手中選出一名選手參加省級比賽,現(xiàn)對他們分別進(jìn)行5次射擊測試,成績分別為(單位:環(huán))

甲:5、6、7、9、8

乙:8、4、8、6、9

(1)分別計(jì)算這兩組數(shù)據(jù)的平均數(shù)和方差;

(2)根據(jù)測試成績,你認(rèn)為選派哪一名選手參賽更好些?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線是常數(shù)),,頂點(diǎn)坐標(biāo)為.給出下列結(jié)論:①若點(diǎn)與點(diǎn)在該拋物線上,當(dāng)時(shí),則;②關(guān)于的一元二次方程無實(shí)數(shù)解,那么(

A.①正確,②正確B.①正確,②錯(cuò)誤C.①錯(cuò)誤,②正確D.①錯(cuò)誤,②錯(cuò)誤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年5月,某大型商業(yè)集團(tuán)隨機(jī)抽取所屬的m家商業(yè)連鎖店進(jìn)行評估,將各連鎖店按照評估成績分成了A、B、C、D四個(gè)等級,繪制了如圖尚不完整的統(tǒng)計(jì)圖表.

評估成績n(分

評定等級

頻數(shù)

90≤n≤100

A

2

80≤n<90

B

70≤n<80

C

15

n<70

D

6

根據(jù)以上信息解答下列問題:

(1求m的值;

(2在扇形統(tǒng)計(jì)圖中,求B等級所在扇形的圓心角的大;(結(jié)果用度、分、秒表示

(3從評估成績不少于80分的連鎖店中任選2家介紹營銷經(jīng)驗(yàn),求其中至少有一家是A等級的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校心靈信箱的設(shè)立,為師、生之間的溝通開設(shè)了一個(gè)書面交流的渠道.為了解九年級學(xué)生對心靈信箱開通兩年來的使用情況,某課題組對該校九年級全體學(xué)生進(jìn)行了一次問卷調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖.

根據(jù)圖表,解答以下問題:

1)該校九年級學(xué)生共有   人;

2)學(xué)生調(diào)查結(jié)果扇形統(tǒng)計(jì)圖中,扇形D的圓心角度數(shù)是   ;

3)請你補(bǔ)充條形統(tǒng)計(jì)圖;

4)根據(jù)調(diào)查結(jié)果可以推斷:兩年來,該校九年級學(xué)生通過心靈信箱投遞出的信件總數(shù)至少有   封.

查看答案和解析>>

同步練習(xí)冊答案