【題目】如圖在等腰Rt△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于D,DE⊥AB于E,若AB=10,則△BDE的周長等于

【答案】10
【解析】解:∵AD平分∠CAB,AC⊥BC于點C,DE⊥AB于E,∴CD=DE. 又∵AD=AD,
∴Rt△ACD≌Rt△AED,∴AC=AE.
又∵AC=BC,
∴BC=AE,
∴△DBE的周長為DE+BD+EB=CD+BD+EB=BC+EB=AC+EB=AE+EB=AB=10.
(提示:設法將DE+BD+EB轉成線段AB).
所以答案是:10.
【考點精析】本題主要考查了等腰直角三角形和角平分線的性質(zhì)定理的相關知識點,需要掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°;定理1:在角的平分線上的點到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點,在這個角的平分線上才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在菱形ABCD中,∠A=60°,AB=4 ,點P在對角線AC上,且PB=PD=4,則∠PDC的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合題:解下列各式
(1)解方程組
(2)解不等式組: ,并把解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB與CD相交于點O,∠A=∠AOC,∠B=∠BOD.

求證:∠C=∠D.
證明:∵∠A=∠AOC,∠B=∠BOD(已知)
又∠AOC=∠BOD(
∴∠A=∠B(
∴AC∥BD(
∴∠C=∠D(

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=﹣(x﹣2)2+3的頂點坐標是(
A.(﹣2,3)
B.(2,3)
C.(2,﹣3)
D.(﹣2,﹣3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平行四邊形ABCD中,對角線AC=12,BD=8,交點為點O,則邊AB的取值范圍為(
A.1<AB<2
B.2<AB<10
C.4<AB<10
D.4<AB<20

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,甲船在港口P的南偏西60°方向,距港口86海里的A處,沿AP方向以每小時15海里的速度勻速駛向港口P.乙船從港口P出發(fā),沿南偏東45°方向勻速駛離港口PC=2x,現(xiàn)兩船同時出發(fā),2小時后乙船在甲船的正東方向.求乙船的航行速度.(結果精確到個位,參考數(shù)據(jù):,,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】完成推理填空:如圖在△ABC中,已知∠1+∠2=180°,∠3=∠B,試說明∠AED=∠C.

解:∵∠1+∠EFD=180°(鄰補角定義),∠1+∠2=180°(已知)
(同角的補角相等)①
(內(nèi)錯角相等,兩直線平行)②
∴∠ADE=∠3()③
∵∠3=∠B()④
(等量代換)⑤
∴DE∥BC()⑥
∴∠AED=∠C()⑦

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的分式方程 + =1(a≠2且a≠3)的解為正數(shù),求字母a的取值范圍.

查看答案和解析>>

同步練習冊答案