精英家教網 > 初中數學 > 題目詳情
如圖,點A、D在⊙O上,BC是⊙O的直徑,若∠D=35°,則∠OAB的度數是   
【答案】分析:根據圓周角定理即可求得∠AOC的度數,再根據三角形的外角的性質以及等邊對等角,即可求解.
解答:解:方法一:
∵∠AOC=2∠D=70°,
又∵OA=OB,
∴∠ABO=∠BAO,
∵∠AOC=∠ABO+∠BAO,
∴∠OAB=35°.
方法二:
∵AO=BO,
∴∠B=∠BAO,
∵∠D=∠B(同弧所對圓周角相等),
∴∠OAB=35°,
故答案是:35°.
點評:本題主要考查了圓周角定理,以及三角形的外角的性質,正確求得∠AOC的度數是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

7、如圖,點B、C在線段AD上,M是AB的中點,N是CD的中點,若MN=a,BC=b,則AD的長是
2a-b

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,點A、B在線段MN上,若MA=AB=BN,則稱A、B都為線段MN上的三等分點.則角的三等分線可以照此定義.精英家教網
(1)若線段MN=9厘米,E是線段MN上的三等分點,那么線段ME為幾厘米?
(2)在∠MON中,射線OA是∠MON的三等分線,OB是∠MOA的三等分線,設∠MOB=x,畫出圖形,并用含x的代數式表示∠MON.精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,點E、F在BC上,AB=DC,∠B=∠C,∠A=∠D,
求證:BE=CF.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知△ABD和△BEP均為等腰直角△,∠BAD=∠BEP=90゜,點O為BD的中點.
(1)如圖,點P、E分別在AB、BD上,求證:AP=
2
OE;
(2)將圖1中的△BPE繞B點順時針旋轉45゜,問(1)中的結論是否成立?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,點C、D在線段AB上,且C為AB的一個四等分點,D為AC中點,若BC=2,則BD的長為
5
5

查看答案和解析>>

同步練習冊答案