【題目】如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交斜邊AB于點M,若H是AC的中點,連接MH.
(1)求證:MH為⊙O的切線.
(2)若MH=,tan∠ABC=,求⊙O的半徑.
(3)在(2)的條件下分別過點A、B作⊙O的切線,兩切線交于點D,AD與⊙O相切于N點,過N點作NQ⊥BC,垂足為E,且交⊙O于Q點,求線段NQ的長度.
【答案】(1)證明見解析;(2)2;(3).
【解析】
(1)連接OH、OM,易證OH是△ABC的中位線,利用中位線的性質(zhì)可證明△COH≌△MOH,所以∠HCO=∠HMO=90°,從而可知MH是⊙O的切線;
(2)由切線長定理可知:MH=HC,再由點M是AC的中點可知AC=3,由tan∠ABC=,所以BC=4,從而可知⊙O的半徑為2;
(3)連接CN,AO,CN與AO相交于I,由AC、AN是⊙O的切線可知AO⊥CN,利用等面積可求出可求得CI的長度,設(shè)CE為x,然后利用勾股定理可求得CE的長度,利用垂徑定理即可求得NQ.
解:(1)連接OH、OM,∵H是AC的中點,O是BC的中點
∴OH是△ABC的中位線
∴OH∥AB,∴∠COH=∠ABC,∠MOH=∠OMB
又∵OB=OM,∴∠OMB=∠MBO
∴∠COH=∠MOH,
在△COH與△MOH中,
∵OC=OM,∠COH=∠MOH,OH=OH
∴△COH≌△MOH(SAS)
∴∠HCO=∠HMO=90°
∴MH是⊙O的切線;
(2)∵MH、AC是⊙O的切線
∴HC=MH=
∴AC=2HC=3
∵tan∠ABC=,∴=
∴BC=4
∴⊙O的半徑為2;
(3)連接OA、CN、ON,OA與CN相交于點I
∵AC與AN都是⊙O的切線
∴AC=AN,AO平分∠CAD
∴AO⊥CN
∵AC=3,OC=2
∴由勾股定理可求得:AO=
∵ACOC=AOCI,∴CI=
∴由垂徑定理可求得:CN=
設(shè)OE=x,由勾股定理可得:
∴,
∴x=,∴CE=,
由勾股定理可求得:EN=,
∴由垂徑定理可知:NQ=2EN=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD,點M為邊AB的中點.
(1)如圖1,點G為線段CM上的一點,且∠AGB=90°,延長AG、BG分別與邊BC、CD交于點E、F.
①求證:BE=CF;
②求證:BE2=BCCE.
(2)如圖2,在邊BC上取一點E,滿足BE2=BCCE,連接AE交CM于點G,連接BG并延長交CD于點F,求tan∠CBF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,對于任意三點A,B,C,給出如下定義:若矩形的任何一條邊均與某條坐標(biāo)軸平行或重合,且A,B,C三點都在矩形的內(nèi)部或邊界上,則稱該矩形為點A,B,C的外延矩形,點A,B,C的所有外延矩形中,面積最小的矩形稱為點A,B,C的最佳外延矩形.例如,圖①中的矩形A1B1C1D1,A2B2C2D2,A3B3CD3,都是點A,B,C的外延矩形,矩形A3B3CD3是點A,B,C的最佳外延矩形.
(1)如圖②,已知A(﹣1,0),B(3,2),點C在直線y=x﹣1上,設(shè)點C的橫坐標(biāo)為t.
①若t=,則點A,B,C的最佳外延矩形的面積為多少?
②若點A,B,C的最佳外延矩形的面積為9,求t的值.
(2)如圖③,已知點M(4,0),N(0,),P(x,y)是拋物線y=﹣x2+2x+3上一點,求點M,N,P的最佳外延矩形面積的最小值,以及此時點P的橫坐標(biāo)x的取值范圍;
(3)已知D(1,0).若Q是拋物線y=﹣x2﹣2mx﹣m2+2m+1的圖象在﹣2≤x≤1之間的最高點,點E的坐標(biāo)為(0,4m),設(shè)點D,E,Q的最佳外延矩形的面積為S,當(dāng)4≤S≤6時,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四邊形ACDE是平行四邊形,連結(jié)CE交AD于點F,連結(jié)BD交CE于點G,連結(jié)BE. 下列結(jié)論中:① CE=BD; ②△ADC是等腰直角三角形;
③∠ADB=∠AEB; ④ CD·AE=EF·CG;
一定正確的結(jié)論有
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,為坐標(biāo)原點.直線與拋物線同時經(jīng)過.
(1)求的值.
(2)點是二次函數(shù)圖象上一點,(點在下方),過作軸,與交于點,與軸交于點.求的最大值.
(3)在(2)的條件下,是否存在點,使和相似?若存在,求出點坐標(biāo),不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】菱形ABCD中, ,其周長為32,則菱形面積為____________.
【答案】
【解析】分析:根據(jù)菱形的性質(zhì)易得AB=BC=CD=DA=8,AC⊥BD, OA=OC,OB=OD,再判定△ABD為等邊三角形,根據(jù)等邊三角形的性質(zhì)可得AB=BD=8,從而得OB=4,在Rt△AOB中,根據(jù)勾股定理可得OA=4,繼而求得AC=2AO=,再由菱形的面積公式即可求得菱形ABCD的面積.
詳解:∵菱形ABCD中,其周長為32,
∴AB=BC=CD=DA=8,AC⊥BD, OA=OC,OB=OD,
∵,
∴△ABD為等邊三角形,
∴AB=BD=8,
∴OB=4,
在Rt△AOB中,OB=4,AB=8,
根據(jù)勾股定理可得OA=4,
∴AC=2AO=,
∴菱形ABCD的面積為: =.
點睛:本題考查了菱形性質(zhì):1.菱形的四個邊都相等;2.菱形對角線相互垂直平分,并且每一組對角線平分一組對角;3.菱形面積公式=對角線乘積的一半.
【題型】填空題
【結(jié)束】
17
【題目】如圖,在△ABC中, , AC=BC=3, 將△ABC折疊,使點A落在BC 邊上的點D處,EF為折痕,若AE=2,則的值為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,在圓O的內(nèi)接四邊形ABCD中,AB=3,AD=5,∠BAD=60°,點C為弧BD的中點,則AC的長是( )
A.4B.2C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有四張背面相同的紙牌A、B、C、D,其正面上方分別畫有四個不同的幾何圖形,下方寫有四個不同算式,小明將四張紙牌背面朝上洗勻后摸出一張,將其余3張洗勻后再摸出一張.
(1)用樹狀圖(或列表法)表示兩次摸牌所有可能出現(xiàn)的結(jié)果(紙牌用A、B、C、D表示);
(2)求摸出的兩張紙牌的圖形是中心對稱圖形且算式也正確的紙牌的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,BC=6,DE是△ABC的中位線,點D在AB上,把點B繞點D按順時針方向旋轉(zhuǎn)α(0°<α<180°)角得到點F,連接AF,BF.下列結(jié)論:①△ABF是直角三角形;②若△ABF和△ABC全等,則α=2∠BAC或2∠ABC;③若α=90°,連接EF,則S△DEF=4.5;其中正確的結(jié)論是( )
A.①②B.①③C.①②③D.②③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com