【題目】三八婦女節(jié)到來之際,某學(xué)校準(zhǔn)備讓辦公室的王老師去給女教師們買點糖果作為禮物.王老師預(yù)先了解到目前比較受老師們喜愛的兩種糖果的價格之和為140元,他計劃購買糖果的數(shù)量比糖果的數(shù)量多5盒,但一共不超過60盒,正當(dāng)王老師去超市買糖果的時候,發(fā)現(xiàn)正打九折銷售,而的價格提高了10%,王老師決定將,糖果的購買數(shù)量對調(diào),這樣,實際花費只比原計劃多20元.已知價格和購買數(shù)量均為整數(shù),則王老師原計劃購買糖果的總花費為________元.

【答案】3100

【解析】

先設(shè)糖果的單價為每盒元,則糖果的單價為每盒元,計劃購買糖果盒,則糖果盒,再根據(jù)題意列出含、的一個不定方程,然后用含的式子表示出,再根據(jù)已知條件求得的取值范圍,并由價格和購買數(shù)量均為整數(shù)可得出,進而即可得到答案.

解:設(shè)糖果的單價為每盒元,則糖果的單價為每盒元,計劃購買糖果盒,則糖果盒,根據(jù)題意得,

解得

糖果一共不超過60

∵價格和購買數(shù)量均為整數(shù)

,

∴王老師原計劃購買糖果的總花費為

故答案是:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB12,點EAD上的一點,AE6,BE的垂直平分線交BC的延長線于點F,連接EFCD于點G.若GCD的中點,則BC的長是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD交于點O,OE平分∠AOC,點FAB上一點(不與點AO重合),過點FFGOE,交CD于點G,若∠AOD=110°,則∠AFG度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電器超市銷售每臺進價分別為200元、170元的A、B兩種型號的電風(fēng)扇,下表是近兩周的銷售情況:

(進價、售價均保持不變,利潤 = 銷售收入-進貨成本)

1)求A、B兩種型號的電風(fēng)扇的銷售單價;

2)若超市準(zhǔn)備用不多于5400元的金額再采購這兩種型號的電風(fēng)扇共30臺,求A種型號的電風(fēng)扇最多能采購多少臺?

3)在(2)的條件下,超市銷售完這30臺電風(fēng)扇能否實現(xiàn)利潤為1400元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCO中,A1,2),B5,2),將ABCOO點逆時針方向旋轉(zhuǎn)90°ABCO的位置,則點B的坐標(biāo)是(  )

A.(﹣2,4B.(﹣25C.(﹣1,5D.(﹣1,4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】春夏來臨之際,天氣開始暖和,某商家抓住商機,在三月份力推甲、乙兩款兒童襯衣.已知三月份甲款襯衣的銷售總額為6000元,乙款襯衣的銷售總額為8100元,乙款襯衣的單價是甲款襯衣單價的1.5倍,乙款襯衣的銷售數(shù)量比甲款襯衣的銷售數(shù)量少5件.

1)求三月份甲款襯衣的單價是多少元?

2)四月份,該商家準(zhǔn)備銷售甲、乙兩款襯衣共200件,為了加大推銷力度,將甲款襯衣的單價在三月份的基礎(chǔ)上下調(diào)了20%,乙款襯衣的單價在三月份的基礎(chǔ)上打五折銷售.要使四月份的總銷售額不低于18720元,則該商家至少要賣出甲款襯衣多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知將一副三角板(直角三角板OAB和直角三角板OCD,AOB=90°,ABO=45°,CDO=90°,COD=60°)

(1)如圖1擺放,點O、A、C在一直線上,則∠BOD的度數(shù)是多少?

(2)如圖2,將直角三角板OCD繞點O逆時針方向轉(zhuǎn)動,若要OB恰好平分∠COD,則∠AOC的度數(shù)是多少?

(3)如圖3,當(dāng)三角板OCD擺放在∠AOB內(nèi)部時,作射線OM平分∠AOC,射線ON平分∠BOD,如果三角板OCD在∠AOB內(nèi)繞點O任意轉(zhuǎn)動,∠MON的度數(shù)是否發(fā)生變化?如果不變,求其值;如果變化,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有兩個內(nèi)角分別是它們對角的一半的四邊形叫做半對角四邊形.

1)如圖1,在半對角四邊形ABCD中,BD,CA,求BC的度數(shù)之和;

(2)如圖2,銳角△ABC內(nèi)接于⊙O,若邊AB上存在一點D,使得BD=BO.∠OBA的平分線交OA于點E,連結(jié)DE并延長交AC于點F,∠AFE=2∠EAF.

求證:四邊形DBCF是半對角四邊形;

(3)如圖3,在(2)的條件下,過點DDG⊥OB于點H,交BC于點G.當(dāng)DH=BG時,求△BGH△ABC的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:

對于二次三項式可以直接用公式法分解為的形式,但對于二次三項式,就不能直接用公式法了,我們可以在二次三項式中先加上一項,使其成為完全平方式,再減去這項,使整個式子的值不變.于是有===

像上面這樣把二次三項式分解因式的方法叫做添(拆)項法.

1)請用上述方法把x24x3分解因式.

(2)多項式x22x2有最小值嗎?如果有,那么當(dāng)它有最小值時x的值是多少?

查看答案和解析>>

同步練習(xí)冊答案