【題目】已知:如圖,點是正比例函數(shù)與反比例函數(shù)的圖象在第一象限的交點,軸,垂足為點,的面積是2.

1)求的值以及這兩個函數(shù)的解析式;

2)若點軸上,且是以為腰的等腰三角形,求點的坐標(biāo).

【答案】(1),反比例函數(shù)的解析式為,正比例函數(shù)的解析式為.2)點的坐標(biāo)為,.

【解析】

1)根據(jù)三角形的面積公式即可求m的值,即可得點A的坐標(biāo),將其代入兩個函數(shù)的解析式可求出的值,從而可得兩個函數(shù)的解析式;

2)先用勾股定理求出OA的長,然后根據(jù)題意,可以分OP為腰和OP為底兩種情況當(dāng)OP為腰時,利用即可得;當(dāng)OP為底時,利用等腰三角形三線合一的性質(zhì)得,點BOP的中點即可得.

1)由題意知,

的面積是2,

解得,

A的坐標(biāo)為

代入正比例函數(shù)可得,則

正比例函數(shù)的解析式為,

將點A的坐標(biāo)代入反比例函數(shù)得,則

反比例函數(shù)的解析式為;

2)∵是以為腰的等腰三角形,

.

①當(dāng)時,∵點的坐標(biāo)為,

,

∴點的坐標(biāo)為

②當(dāng)時,

(等腰三角形三線合一的性質(zhì))

∴點的坐標(biāo)為.

綜上所述:點的坐標(biāo)為,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A1,2),B3,1),C(-2,-1).

1)作出ABC關(guān)于y軸對稱的A1B1C1

2A1B1C1的面積為

3)在y軸上作出點Q,使QAB的周長最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某商品的標(biāo)志圖案,ACBD是⊙O的兩條直徑,首尾順次連接點A、B、C、D,得到四邊形ABCD,若AC=10cm,BAC=36°,則圖中陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AEABAEAB,BCCDBCCD,請按圖中所標(biāo)注的數(shù)據(jù),計算圖中實線所圍成的面積S是(

A.50B.62C.65D.68

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018清明節(jié)前夕,宜賓某花店用1000元購進(jìn)若干菊花,很快售完,接著又用2500元購進(jìn)第二批

花,已知第二批所購花的數(shù)量是第一批所購花數(shù)的2倍,且每朵花的進(jìn)價比第一批的進(jìn)價多元.

(1)第一批花每束的進(jìn)價是多少元.

(2)若第一批菊花按3元的售價銷售,要使總利潤不低于1500不考慮其他因素,第二批每朵菊花的售價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,王老師將某班近三個月跳躍類項目的訓(xùn)練情況做了統(tǒng)計,并繪制了折線統(tǒng)計圖,則根據(jù)圖中信息以下判斷錯誤的是(

A.男女生5月份的平均成績一樣

B.4月到6月,女生平均成績一直在進(jìn)步

C.4月到5月,女生平均成績的增長率約為

D.5月到6月女生平均成績比4月到5月的平均成績增長快

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點B、F、CE在一條直線上,FB=CEABED,ACFD;

(1)已知∠A=85°,ACE=115°,求∠B度數(shù);

(2)求證:AB=DE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長為6,面積是18,腰AC的垂直平分線EF分別交AC,ABE,F點,若點DBC邊的中點,點M為線段EF上一動點,則CDM的周長的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在等腰三角形△ABC中,AC=BC,D、E分別為AB、BC上一點,∠CDE=∠A.

(1)如圖,若BC=BD,求證:CD=DE;

(2)如圖,過點CCH⊥DE,垂足為H,若CD=BD,EH=1,求DE﹣BE的值.

查看答案和解析>>

同步練習(xí)冊答案