如圖, Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC于點D,過點D的切線交BC于E.

(1)求證:;(2)若tanC=,DE=2,求AD的長.

 

 (1)連接BD,∵AB為直徑,∠ABC=90°,∴BE切⊙O于點B,因為DE切⊙O于點D,所以DE=BE,∴∠EBD=∠EDB,∵∠ADB=90°,∴∠EBD+∠C=90°,∠BDE=∠CDE=90°,∴∠C=∠EDC,∴DE=CE,∴.-

(2) 因為DE=2,,所以BC=4,在Rt△ABC中,tanC=,所以AB=BC·=2,在Rt△ABC中,AC===6,又因為△ABD∽△ACB,所以,即,所以AD=.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,Rt△ABC的直角邊AC落在數(shù)軸上,點A表示的數(shù)是2,以A為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn)△ABC.
(1)當∠B=70°時,則旋轉(zhuǎn)角度至少是
 
度時,點B的對應點落在數(shù)軸上;
(2)若AB=
5
,點B的對應點B1第一次落在數(shù)軸上時,那么點B1所表示的數(shù)是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,點P從B點出發(fā),以2cm/s的速度向點C運動,點Q從C點出發(fā),以1cm/s的速度向點A運動.若P,Q同時出發(fā),則經(jīng)過
2.4
2.4
s時,P,Q兩點的距離最近,最近距離為
6
5
5
6
5
5
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知,如圖,Rt△ABC中∠B=90°,Rt△DEF中∠E=90°,OF=OC,AB=6,BF=2,CE=8,CA=0,DE=15.
(1)求證:△ABC∽△DEF;
(2)求線段DF,F(xiàn)C的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•封開縣一模)如圖,Rt△ABC的直角邊BC=8,AC=6
(1)用尺規(guī)作圖作AB的垂直平分線l,垂足為D,(保留作圖痕跡,不要求寫作法、證明);
(2)連結(jié)D、C兩點,求CD的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,Rt△ABC中,∠C=90°,AC=4,BC=3,以△ABC的一邊為邊畫等腰三角形,使它的第三個頂點在△ABC的其它邊上.請在圖①、圖②、圖③、圖④中分別畫出一個符合條件的等腰三角形,且四個圖形中的等腰三角形各不相同,并在圖中表明所畫等腰三角形哪兩條邊相等(要求尺規(guī)作圖并保留痕跡).

查看答案和解析>>

同步練習冊答案