【題目】如圖,P為反比例函數(shù)y=k0)在第一象限內(nèi)圖象上的一點,過點P分別作x軸,y軸的垂線交一次函數(shù)y=-x-6的圖象于點AB.若∠AOB=135°,則k的值是______

【答案】18

【解析】

BBFx軸于F,過點AADy軸于D,設(shè)P點坐標(biāo)(n,),結(jié)合直線y=-x-6,A(n-n-6),B(-6-,),易證△BOG∽△OAC,得=,進而得=,即可求解.

BBFx軸于F,過點AADy軸于D,

∵直線AB函數(shù)式為y=-x-6,PBy軸,PAx軸,

C(0,-6),G(-6,0),

OC=OG=6,

∴∠OGC=OCG=45°,

PBOG,PAOC

∴∠PBA=OGC=45°,∠PAB=OCG=45°,

PA=PB,

設(shè)P點坐標(biāo)(n),

A(n,-n-6),B(-6-,),

∵∠AOB=135°,

∴∠BOG+AOC=45°

∵直線AB的解析式為y=-x-6,

∴∠AGO=OCG=45°

∴∠BGO=OCA,∠BOG+OBG=45°

∴∠OBG=AOC,

∴△BOG∽△OAC,

=,

=,

在等腰RtBFG中,BG=BF=,

在等腰RtACD中,AC=AD=n,

=

k=18

故答案為:18

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸分別交于,兩點.

1)求拋物線的表達(dá)式;

2)在第二象限內(nèi)取一點,作垂直軸于點,連結(jié),且,.將沿軸向右平移個單位,當(dāng)點落在拋物線上時,求的值;

3)在(2)的條件下,當(dāng)點第一次落在拋物線上時記為點,點是拋物線對稱軸上一點.試探究:在拋物線上是否存在點,使以點、為頂點的四邊形是平行四邊形,若存在,請求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:實數(shù)x滿足2a3≤x≤2a+2,y1x+ay2=﹣2x+a+3,對于每一個xp都取y1,y2中的較大值.若p的最小值是a21,則a的值是( 。

A.0或﹣3B.2或﹣1C.12D.2或﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某課外學(xué)習(xí)小組根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)yx33x的圖象與性質(zhì)進行了探究.請補充完整以下探索過程:

(1)列表:

x

2

1

0

1

2

y

2

m

2

0

n

2

請直接寫出m,n的值;

(2)根據(jù)上表中的數(shù)據(jù),在平面直角坐標(biāo)系內(nèi)補全該函數(shù)的圖象;

(3)若函數(shù)yx33x的圖象上有三個點A(x1,y1),B(x2,y2),C(x3,y3),且x1<﹣2x22x3,則y1,y2,y3之間的大小關(guān)系為   (連接);

(4)若方程x33xk有三個不同的實數(shù)根.請根據(jù)函數(shù)圖象,直接寫出k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,點上,的平分線交于點,交于點.過點的切線的延長線于點,連接,

1)求證:;

2)過點分別作直線垂線,垂足為,.若,,請你完成示意圖并求線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某高科技公司根據(jù)市場需求,計劃生產(chǎn)A,B兩種型號的醫(yī)療器械.其部分信息如下:

信息一:每臺A型器械的售價為24萬元,每臺B型器械的售價為30萬元,每臺B型器械的生產(chǎn)成本比A型器械的生產(chǎn)成本多5萬元.

信息二:若銷售3A型器械和5B型器械,共獲利37萬元;

根據(jù)上述信息,解答下列問題:

1)求每臺A型器械、每臺B型器械的生產(chǎn)成本各是多少萬元?

2)若A,B兩種型號的醫(yī)療器械共生產(chǎn)80臺,且該公司所籌生產(chǎn)醫(yī)療器械資金不少于1800萬元,但不超過1810萬元,且把所籌資金全部用于生產(chǎn)此兩種醫(yī)療器械,根據(jù)市場調(diào)查,每臺A型醫(yī)療器械的售價將會提高a萬元(a0),每臺B型醫(yī)療器械的售價不會改變,該公司應(yīng)該如何生產(chǎn)可以獲得最大利潤?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(4,0)兩點,與y軸相交于點C,連結(jié)BC,點P為拋物線上一動點,過點P作x軸的垂線l,交直線BC于點G,交x軸于點E.

(1)求拋物線的表達(dá)式;

(2)當(dāng)P位于y軸右邊的拋物線上運動時,過點C作CF直線l,F(xiàn)為垂足,當(dāng)點P運動到何處時,以P,C,F(xiàn)為頂點的三角形與OBC相似?并求出此時點P的坐標(biāo);

(3)如圖2,當(dāng)點P在位于直線BC上方的拋物線上運動時,連結(jié)PC,PB,請問PBC的面積S能否取得最大值?若能,請出最大面積S,并求出此時點P的坐標(biāo),若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,一次函數(shù)y=2x與反比例函數(shù)y=(k0)的圖象交于A、B兩點,點P在以C(-20)為圓心,1為半徑的圓上,QAP的中點

1)若AO=,求k的值;

2)若OQ長的最大值為,求k的值;

3)若過點C的二次函數(shù)y=ax2+bx+c同時滿足以下兩個條件:①a+b+c=0;②當(dāng)a≤x≤a+1時,函數(shù)y的最大值為4a,求二次項系數(shù)a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形ABC的邊長是2,M是高CH所在直線上的一個動點,連接MB,將線段BM繞點B逆時針旋轉(zhuǎn)60°得到BN,連接MN,則在點M運動過程中,線段MN長度的最小值是(  )

A. B. 1 C. D.

查看答案和解析>>

同步練習(xí)冊答案