【題目】如圖,在是直徑,點上一點,點的中點,過點的切線,與、的延長線分別交于點,連接.

(1)求證:.

(2)已知的半徑為2,當為何值時,,并說明理由.

【答案】(1)證明見解析;(2)時,.理由見解析.

【解析】

1)連接OE,由點E的中點,過點E作⊙O的切線,可得OECDBDOE,進而得出BDCD

2)當AC=4時,連接AF,證明AFB∽△BCD,所以,即BF=DF.

(1)如圖1,連接,

相切于點,

.

∵點的中點,

,

,

,

.

(2)時,.理由如下:

如圖2,連接,

的直徑,

(1),

AFB∽△BCD,

時,

的半徑為2,

,

BC=AB+AC=8

,

,

.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為弘揚中華傳統(tǒng)文化,某校舉辦了學生“國學經典大賽”,比賽項目為:A.唐詩;B.宋詞;C.元曲;D.論語.比賽形式分“單人組”和“雙人組”.

1)小明參加“單人組”,他從中隨機抽取一個比賽項目,則抽到“唐詩”的是 事件,其概率是

2)若小亮和小麗組成一個小組參加“雙人組”比賽,比賽規(guī)則是:同一小組的兩名隊員的比賽項目不能相同,且每人只能隨機抽取一次,則小亮和小麗都沒有抽到“元曲”的概率是多少?請用畫樹狀圖或列表的方法進行說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:梯形ABCD中,ADBC,EAC的中點,連接DE并延長交BC于點F,連接AF

1)求證:ADCF;

2)在原有條件不變的情況下,請你再添加一個條件(不再增添輔助線),使四邊形AFCD成為菱形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】9分)為弘揚 東亞文化,某單位開展了東亞文化之都演講比賽,在安排1位女選手和3位男選手的出場順序時,采用隨機抽簽方式.

1)請直接寫出第一位出場是女選手的概率;

2)請你用畫樹狀圖或列表的方法表示第一、二位出場選手的所有等可能結果,并求出他們都是男選手的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,中點,點在直線上運動,以為邊向的右側作正方形,連接,則在點的運動過程中,線段的最小值為:( )

A.2B.C.1D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,自左至右,第1個圖由1個正六邊形、6個正方形和6個等邊三角形組成;第2個圖由2個正六邊形、11個正方形和10個等邊三角形組成;第3個圖由3個正六邊形、16個正方形和14個等邊三角形組成;,按照此規(guī)律,第n個圖中正方形和等邊三角形的個數(shù)之和為(  )個.

A.9nB.6nC.9n3D.6n+3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形OABC的頂點A、C分別在x軸和y軸上,點B的坐標為.雙曲線的圖象經過BC的中點D,且與AB交于點E,連接DE

1)求k的值及點E的坐標;

2)若點FOC邊上一點,且△FBC∽△DEB,求直線FB的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,∠C=90°AC=8,BC=6,點D、E分別在BCAC上,且BD=CE,設點C關于DE的對稱點為F,若DFAB,則BD的長為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E、F,連接BD、DP,BDCF相較于點H,給出下列結論:①BE=2AE;②△DFP∽△BPH;③DP2=PH·PC;④若AB=2,則SBPD=;其中正確的是(

A.①②③④B.②③C.①②④D.①③④

查看答案和解析>>

同步練習冊答案