【題目】已知一個矩形紙片,將該紙片放置在平面直角坐標系中,點,點,點P為邊上的動點.
(1)如圖①,經(jīng)過點O、P折疊該紙片,得點和折痕.當點P的坐標為時,求的度數(shù);
(2)如圖②,當點P與點C重合時,經(jīng)過點O、P折疊紙片,使點B落在點的位置,與交于點M,求點M的坐標;
(3)過點P作直線,交于點Q,再取中點T,中點N,分別以,,,為折痕,依次折疊該紙片,折疊后點O的對應點與點B的對應點恰好重合,且落在線段上,A、C的對應點也恰好重合,也落在線段上,求此時點P的坐標(直接寫出結(jié)果即可).
科目:初中數(shù)學 來源: 題型:
【題目】近日,嶗山區(qū)教體局對參加2018年嶗山區(qū)禁毒知識競賽的2500名初中學生的初試成績(成績均為整數(shù))進行一次抽樣調(diào)查,所得數(shù)據(jù)如下表:
成績分組 | 60.5~70.5 | 70.5~80.5 | 80.5~90.5 | 90.5~100.5 |
頻數(shù) | 50 | 150 | 200 | 100 |
(1)抽取樣本的總?cè)藬?shù);
(2)根據(jù)表中數(shù)據(jù),補全圖中頻數(shù)分布直方圖;
(3)若規(guī)定初試成績在90分以上(不包括90分)的學生進入決賽,則全區(qū)進入決賽的初中學生約有多少人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤中,指針位置固定,三個扇形的面積都相等,且分別標有數(shù)字1,2,3.
(1)小明轉(zhuǎn)動轉(zhuǎn)盤一次,當轉(zhuǎn)盤停止轉(zhuǎn)動時,指針所指扇形中的數(shù)字是奇數(shù)的概率為 ;
(2)小明先轉(zhuǎn)動轉(zhuǎn)盤一次,當轉(zhuǎn)盤停止轉(zhuǎn)動時,記錄下指針所指扇形中的數(shù)字;接著再轉(zhuǎn)動轉(zhuǎn)盤一次,當轉(zhuǎn)盤停止轉(zhuǎn)動時,再次記錄下指針所指扇形中的數(shù)字,求這兩個數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系內(nèi),拋物線與線段有兩個不同的交點,其中點,點.有下列結(jié)論:
①直線的解析式為;②方程有兩個不相等的實數(shù)根;③a的取值范圍是或.
其中,正確結(jié)論的個數(shù)為( )
A.0B.1C.2D.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在某中學開展的“好書伴我成長”讀書活動中,為了解八年級320名學生讀書情況,隨機調(diào)查了八年級部分學生讀書的冊數(shù).根據(jù)調(diào)查結(jié)果繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題:
(Ⅰ)本次接受調(diào)查的學生人數(shù)為_____________,圖①中m的值為______________;
(Ⅱ)求統(tǒng)計的這組數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅲ)根據(jù)統(tǒng)計的樣本數(shù)據(jù),估計該校讀書超過3冊的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖, 在中,,, 點為中點, 點在邊上, 連接,過點作
上交于點,連接。下列結(jié)論:
(1)(2)(3)(4)
其中正確的是__________(填寫所有正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】太陽能光伏發(fā)電因其清潔、安全、便利、高效等特點,已成為世界各國普遍關(guān)注和重點發(fā)展的新興產(chǎn)業(yè),如圖是太陽能電池板支撐架的截面圖,其中的粗線表示支撐角鋼,太陽能電池板與支撐角鋼AB的長度相同,均為300cm,AB的傾斜角為,BE=CA=50cm,支撐角鋼CD,EF與底座地基臺面接觸點分別為D,F(xiàn),CD垂直于地面,于點E.兩個底座地基高度相同(即點D,F(xiàn)到地面的垂直距離相同),均為30cm,點A到地面的垂直距離為50cm,求支撐角鋼CD和EF的長度各是多少cm(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,拋物線y=x2+x+3與x軸交于A、B兩點(點A在點B的右側(cè)),與y軸交于點C,過點C作x軸的平行線交拋物線于點P.連接AC.
(1)求點P的坐標及直線AC的解析式;
(2)如圖2,過點P作x軸的垂線,垂足為E,將線段OE繞點O逆時針旋轉(zhuǎn)得到OF,旋轉(zhuǎn)角為α(0°<α<90°),連接FA、FC.求AF+CF的最小值;
(3)如圖3,點M為線段OA上一點,以OM為邊在第一象限內(nèi)作正方形OMNG,當正方形OMNG的頂點N恰好落在線段AC上時,將正方形OMNG沿x軸向右平移,記平移中的正方形OMNG為正方形O′MNG,當點M與點A重合時停止平移.設平移的距離為t,正方形O′MNG的邊MN與AC交于點R,連接O′P、O′R、PR,是否存在t的值,使△O′PR為直角三角形?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com