【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問(wèn)題:
(1)甲登山上升的速度是每分鐘 米,乙在A地時(shí)距地面的高度b為 米;
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請(qǐng)求出乙登山全程中,距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)關(guān)系式;
(3)登山多長(zhǎng)時(shí)間時(shí),甲、乙兩人距地面的高度差為70米?
【答案】(1)10;30;(2)y=;(3)登山3分鐘、10分鐘或13分鐘
【解析】
(1)根據(jù)速度=高度÷時(shí)間即可算出甲登山上升的速度; 根據(jù)高度=速度×?xí)r間即可算出乙在A地時(shí)距地面的高度b的值;
(2)分0≤x≤2和x≥2兩種情況,根據(jù)高度=初始高度+速度×?xí)r間即可得出y關(guān)于x的函數(shù)關(guān)系;
(3)當(dāng)乙未到終點(diǎn)時(shí), 找出甲登山全程中y關(guān)于x的函數(shù)關(guān)系式,令二者做差等于50即可得出關(guān)于x的一元一次方程, 解之即可求出x值;當(dāng)乙到達(dá)終點(diǎn)時(shí),用終點(diǎn)的高度-甲登山全程中y關(guān)于x的函數(shù)關(guān)系式=50,即可得出關(guān)于x的一元一次方程, 解之可求出x值.綜上即可得出結(jié)論.
(1)甲登山上升的速度是:(300﹣100)÷20=10(米/分鐘),
b=15÷1×2=30.
故答案為:10;30;
(2)當(dāng)0≤x<2時(shí),y=15x;
當(dāng)x≥2時(shí),y=30+10×3(x﹣2)=30x﹣30.
當(dāng)y=30x﹣30=300時(shí),x=11.
∴乙登山全程中,距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)關(guān)系式為y=;
(3)甲登山全程中,距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)關(guān)系式為y=10x+100(0≤x≤20).
當(dāng)10x+100﹣(30x﹣30)=70時(shí),解得:x=3;
當(dāng)30x﹣30﹣(10x+100)=70時(shí),解得:x=10;
當(dāng)300﹣(10x+100)=70時(shí),解得:x=13.
答:登山3分鐘、10分鐘或13分鐘時(shí),甲、乙兩人距地面的高度差為70米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)圓外一點(diǎn)P作⊙O的兩條切線,切點(diǎn)分別為A、B,連接AB,在AB、PB、PA上分別取一點(diǎn)D、E、F,使AD=BE,BD=AF,連接DE、DF、EF,則∠EDF等于( 。
A.90°﹣∠PB.90°﹣∠PC.180°﹣∠PD.45°﹣∠P
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線與雙曲線(x>0)交于點(diǎn).
(1)求a,k的值;
(2)已知直線過(guò)點(diǎn)且平行于直線,點(diǎn)P(m,n)(m>3)是直線上一動(dòng)點(diǎn),過(guò)點(diǎn)P分別作軸、軸的平行線,交雙曲線(x>0)于點(diǎn)、,雙曲線在點(diǎn)M、N之間的部分與線段PM、PN所圍成的區(qū)域(不含邊界)記為.橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).
①當(dāng)時(shí),直接寫(xiě)出區(qū)域內(nèi)的整點(diǎn)個(gè)數(shù);②若區(qū)域內(nèi)的整點(diǎn)個(gè)數(shù)不超過(guò)8個(gè),結(jié)合圖象,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:關(guān)于 x 的方程 2x2+kx﹣1=0.
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)若方程的一個(gè)根是﹣1,求另一個(gè)根及 k 值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BC=4,BA=5,點(diǎn)D是邊AC上的一動(dòng)點(diǎn),過(guò)點(diǎn)D作DE∥AB交邊BC于點(diǎn)E,過(guò)點(diǎn)B作BF⊥BC交DE的延長(zhǎng)線于點(diǎn)F,分別以DE,EF為對(duì)角線畫(huà)矩形CDGE和矩形HEBF,則在D從A到C的運(yùn)動(dòng)過(guò)程中,當(dāng)矩形CDGE和矩形HEBF的面積和最小時(shí),AD的長(zhǎng)度為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一位旅行者騎自行車(chē)沿湖邊正東方向筆直的公路BC行駛,在B地測(cè)得湖中小島上某建筑物A在北偏東45°方向,行駛12min后到達(dá)C地,測(cè)得建筑物A在北偏西60°方向如果此旅行者的速度為10km/h,求建筑物A到公路BC的距離.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】商場(chǎng)某種新商品每件進(jìn)價(jià)是120元,在試銷(xiāo)期間發(fā)現(xiàn),當(dāng)每件商品售價(jià)為130元時(shí),每天可銷(xiāo)售70件,當(dāng)每件商品售價(jià)高于130元時(shí),每漲價(jià)1元,日銷(xiāo)售量就減少1件.據(jù)此規(guī)律,請(qǐng)回答:
(1)當(dāng)每件商品售價(jià)定為170元時(shí),每天可銷(xiāo)售多少件商品?商場(chǎng)獲得的日盈利是多少?
(2)在上述條件不變,商品銷(xiāo)售正常的情況下,每件商品的銷(xiāo)售價(jià)定為多少元時(shí),商場(chǎng)日盈利可達(dá)到1600元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于一個(gè)函數(shù),當(dāng)自變量取時(shí),函數(shù)值等于,我們稱(chēng)為這個(gè)函數(shù)的“二合點(diǎn)”.如果二次函數(shù)有兩個(gè)相異的二合點(diǎn),,且,則的取值范圍是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A,B兩點(diǎn)分別在反比例函數(shù)和的圖像上,連接OA,OB,若OA⊥OB,OB=2OA,則k的值為( )
A.-2B.2C.-4D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com