【題目】如圖,△ABC的面積為S,作△ABC邊中線AC1,取AB的中點A1,連接A1C1得到第一個三角形△A1BC1,作△A1BC1中線A1C2,取A1B的中點A2,連接A1C2得到第二個三角形△A2BC2………,重復這樣的操作,則第2019個三角形△A2019BC2019的面積是_________.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將幾個小正方形與小長方形拼成一個邊長為(a+b+c)的正方形.
(1)若用不同的方法計算這個邊長為(a+b+c)的正方形面積,就可以得到一個的等式,這個等式可以為 ;
(2)請利用(1)中的等式解答下列問題:
①若三個實數(shù)a,b,c滿足a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;
②若三個實數(shù)x,y,z滿足2x×4y÷8z=32,x2+4y2+9z2=45,求2xy﹣3xz﹣6yz的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,對角線AC,BD交于點O,AE平分∠BAD交BC于點E,且∠ADC=60°,AB=3,BC=6.求平行四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等圓⊙O1 和⊙O2 相交于A,B兩點,⊙O2 經(jīng)過⊙O1 的圓心O1,兩圓的連心線交⊙O1于點M,交AB于點N,連接BM,已知AB=2.
求證:(1)BM是⊙O2的切線;
(2)求弧AM的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(閱讀)如圖1,等邊△ABC中,P是AC邊上一點,Q是CB延長線上一點,若AP=BQ.則過P作PF∥BC交AB于F,可證△APF是等邊三角形,再證△PDF≌QDB可得D是FB的中點.請寫出證明過程.
(運用)如圖2,△ABC是邊長為6的等邊三角形,P是AC邊上一動點,由A向C運動(與A,C不重合),Q是CB延長線上一動點,與點P同時以相同的速度由B向CB延長線方向運動(Q不與B重合),過P作PE⊥AB于E,連接PQ交AB于D.
(1)當∠BQD=30°時,求AP的長;
(2)在運動過程中線段ED的長是否發(fā)生變化?如果不變,直接寫出線段ED的長;如果發(fā)生改變,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC,△DEC均為直角三角形,B,C,E三點在一條直線上,過D作DM⊥AC于M.
(1)如圖1,若△ABC≌△DEC,且AB=2BC.
①過B作BN⊥AC于N,則線段AN,BN,MN之間的數(shù)量關系為: ;(直接寫出答案)
②連接ME,求的值;
(2)如圖2,若AB=CE=DE,DM=2,MC=1,求ME的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC 中,AB=CB,∠ABC=90°,F 為 AB 延長線上一點,點 E 在 BC 上,且 AE=CF.
(1)求證:△ABE≌△CBF;
(2)若∠CAE=25,求∠BFC 度數(shù).
(3)若∠CAE=15°,BF=3.求AE的長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠B=∠C=90°,∠DAB與∠ADC的平分線相交于BC邊上的M點.有下列結論:①∠AMD=90°;②M為BC的中點;③AB+CD=AD;④S△ADM=S梯形ABCD;⑤M到AD的距離等于BC的一半.其中正確的結論有____
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com