分析 (1)連接BD取BD中點(diǎn)O,取BF中點(diǎn)Q,連接OG、EQ、GQ、OC.只要證明△EQG≌△GOC即可.
(2)QG與OC交于點(diǎn)O′,先證明∠GO′C=90°,再利用全等三角形的性質(zhì)即可解決問題.
解答 證明:(1)連接BD取BD中點(diǎn)O,取BF中點(diǎn)Q,連接OG、EQ、GQ、OC.
∵DO=OB,DG=GF,
∴OG=$\frac{1}{2}$BF,OG∥BF,
∵DG=GF,F(xiàn)Q=QF,
∴GQ∥BD,GQ=$\frac{1}{2}$BD,
∵四邊形ABCD是正方形,
∴BC=CD,∠BCD=90°,
∴OC=$\frac{1}{2}$BD=QG,OC⊥BD,
∴∠GOC=90°-∠OGQ,
∵BE=EF,∠BEF=90°,
∴EQ⊥BF,∠EQF=90°,
∴∠EQG=90°-∠GQF,
∵∠OGQ=∠GQF,
∴∠GOC=∠EQG,
在△EQG和△GOC中,
$\left\{\begin{array}{l}{EQ=OG}\\{∠EQG=∠GOC}\\{GQ=OC}\end{array}\right.$,
∴△EQG≌△GOC,
∴GC=EQ.
(2)QG與OC交于點(diǎn)O′.
∵△EQG≌△GOC,
∴∠EGQ=∠GCO,
∵OC⊥BD,QG∥BD,
∴OC⊥QG,∠GO′C=90°
∴∠OCG+∠QGC=90°,
∴∠EGQ+∠QGC=90°
∴∠EGC=90°,
∴EG⊥GC.
點(diǎn)評 本題考查全等三角形的判定和性質(zhì)、正方形的性質(zhì)、三角形中位線定理、等腰直角三角形的性質(zhì)等知識(shí),解題的關(guān)鍵是添加輔助線構(gòu)造全等三角形,學(xué)會(huì)利用三角形中位線添加輔助線,掌握證明垂直的方法,屬于中考?碱}型.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | x≥$\frac{3}{4}$ | B. | x≤$\frac{3}{4}$ | C. | x<$\frac{3}{4}$ | D. | x≠$\frac{3}{4}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | x<0 | B. | x<$\frac{1}{2}$ | C. | x$≥\frac{1}{2}$ | D. | x$>\frac{1}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | k≠-3 | B. | k≠5 | C. | k≠-3且k≠-5 | D. | k≠-3且k≠5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com