【題目】如圖,方格紙中的每個小正方形的邊長都為1,在建立平面直角坐標系后,△ABC的頂點均在格點上.
(1)以點A為旋轉中心,將△ABC繞點A逆時針旋轉90°得到△AB1C1,畫出△AB1C1.
(2)畫出△ABC關于原點O成中心對稱的△A2B2C2,若點C的坐標為(﹣4,﹣1),則點C2的坐標為 .
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一段拋物線y=﹣x2+4(﹣2≤x≤2)為C1,與x軸交于A0,A1兩點,頂點為D1;將C1繞點A1旋轉180°得到C2,頂點為D2;C1與C2組成一個新的圖象,垂直于y軸的直線l與新圖象交于點P1(x1,y1),P2(x2,y2),與線段D1D2交于點P3(x3,y3),設x1,x2,x3均為正數(shù),t=x1+x2+x3,則t的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=,E是AD邊上的一點(點E與點A和點D不重合),BE的垂直平分線交AB于點M,交DC于點N.
(1)證明:MN = BE.
(2)設AE=,四邊形ADNM的面積為S,寫出S關于的函數(shù)關系式.
(3)當AE為何值時,四邊形ADNM的面積最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB=10°,點P在OB上.以點P為圓心,OP為半徑畫弧,交OA于點P1(點P1與點O不重合),連接PP1;再以點P1為圓心,OP為半徑畫弧,交OB于點P2(點P2與點P不重合),連接P1 P2;再以點P2為圓心,OP為半徑畫弧,交OA于點P3(點P3與點P1不重合),連接P2 P3;……
請按照上面的要求繼續(xù)操作并探究:
∠P3 P2 P4=_____°;按照上面的要求一直畫下去,得到點Pn,若之后就不能再畫出符合要求點Pn+1了,則n=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正方形ABCD的邊長為2,將射線AB繞點A順時針旋轉α,所得射線與線段BD交于點M,作CE⊥AM于點E,點N與點M關于直線CE對稱,連接CN.
(1)如圖,當0°<α<45°時:
①依題意補全圖;
②用等式表示∠NCE與∠BAM之間的數(shù)量關系:___________;
(2)當45°<α<90°時,探究∠NCE與∠BAM之間的數(shù)量關系并加以證明;
(3)當0°<α<90°時,若邊AD的中點為F,直接寫出線段EF長的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將邊長為8的正方形紙片ABCD沿著EF折疊,使點C落在AB邊的中點M處.點D落在點D'處,MD'與AD交于點G,則△AMG的內切圓半徑的長為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點A(x1,y1)、B(x2,y2)在二次函數(shù)y=x2+mx+n的圖像上,當x1=1、x2=3時,y1=y2.
(1)若P(a,b1),Q(3,b2)是函數(shù)圖象上的兩點,b1>b2,則實數(shù)a的取值范圍是( )
A.a<1 B.a>3 C.a<1或a>3 D.1<a<3
(2)若拋物線與x軸只有一個公共點,求二次函數(shù)的表達式.
(3)若對于任意實數(shù)x1、x2都有y1+y2≥2,則n的范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明大學畢業(yè)回家鄉(xiāng)創(chuàng)業(yè),第一期培植盆景與花卉各50盆售后統(tǒng)計,盆景的平均每盆利潤是160元,花卉的平均每盆利潤是19元,調研發(fā)現(xiàn):
①盆景每增加1盆,盆景的平均每盆利潤減少2元;每減少1盆,盆景的平均每盆利潤增加2元;②花卉的平均每盆利潤始終不變.
小明計劃第二期培植盆景與花卉共100盆,設培植的盆景比第一期增加x盆,第二期盆景與花卉售完后的利潤分別為W1,W2(單位:元)
(1)用含x的代數(shù)式分別表示W1,W2;
(2)當x取何值時,第二期培植的盆景與花卉售完后獲得的總利潤W最大,最大總利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線與軸交于點、,頂點為M.
(1)求拋物線的解析式和點M的坐標;
(2)點E是拋物線段BC上的一個動點,設的面積為S,求出S的最大值,并求出此時點E的坐標;
(3)在拋物線的對稱軸上是否存在點P,使得以A、P、C為頂點的三角形是直角三角形?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com