【題目】已知:如圖,在平行四邊形中,G、H分別是、的中點(diǎn),E、O、F分別是對(duì)角線上的四等分點(diǎn),順次連接G、E、H、F.
(1)求證:四邊形是平行四邊形;
(2)當(dāng)平行四邊形滿(mǎn)足_______條件時(shí),四邊形是菱形;
(3)若,探究四邊形的形狀,并說(shuō)明理由.
【答案】(1)見(jiàn)解析;(2);(3)四邊形是矩形,理由見(jiàn)解析
【解析】
(1)連接AC,由平行四邊形的性質(zhì)和已知條件得出E、F分別為OB、OD的中點(diǎn),證出GF為△AOD的中位線,由三角形中位線定理得出GF∥OA,GF=OA,同理:EH∥OC,EH=OC,得出EH=GF,EH∥GF,即可得出結(jié)論;
(2)連接GH,證出四邊形ABHG是平行四邊形,再證明GH⊥EF,即可得出平行四邊形GEHF是菱形;
(3)由(2)得:四邊形ABHG是平行四邊形,得出GH=AB,證出GH=EF,即可得出四邊形GEHF是矩形.
解:(1)連接AC,
∵四邊形ABCD是平行四邊形,
∴OA=OC,OB=OD,
∴BD的中點(diǎn)在AC上,
∵E、O、F分別是對(duì)角線BD上的四等分點(diǎn),
∴E、F分別為OB、OD的中點(diǎn),
∵G是AD的中點(diǎn),
∴GF為△AOD的中位線,
∴GF∥OA,GF=OA,
同理:EH∥OC,EH=OC,
∴EH=GF,EH∥GF,
∴四邊形GEHF是平行四邊形;
(2)當(dāng)ABCD滿(mǎn)足AB⊥BD條件時(shí),四邊形GEHF是菱形;
理由:連接GH,
則AG=BH,AG∥BH,
∴四邊形ABHG是平行四邊形,
∴AB∥GH,
∵AB⊥BD,
∴GH⊥BD,
∴GH⊥EF,
∴平行四邊形GEHF是菱形,
故答案為:AB⊥BD;
(3)四邊形GEHF是矩形;
理由:由(2)得,四邊形ABHG是平行四邊形,
∴GH=AB,
∵BD=2AB,
∴AB=BD=EF,
∴GH=EF,
∴四邊形GEHF是矩形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知雙曲線,經(jīng)過(guò)點(diǎn).
(1)求的值;
(2)過(guò)作軸,垂足為,點(diǎn)是雙曲線的一點(diǎn),連接,,若的面積為12,求直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸為x=﹣1,且拋物線經(jīng)過(guò) A(1,0),C(0,3)兩點(diǎn),與x軸交于點(diǎn)B.
(1)求拋物線的解析式;
(2)在拋物線的對(duì)稱(chēng)軸x=﹣1上找一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,求此時(shí)點(diǎn)M的坐標(biāo);
(3)設(shè)點(diǎn)P為拋物線對(duì)稱(chēng)軸x=﹣1上的一個(gè)動(dòng)點(diǎn),求使△BPC為直角三角形的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y1=kx+n(n<0)和反比例函數(shù)y2=(m>0,x>0).
(1)如圖1,若n=﹣2,且兩個(gè)函數(shù)的圖象都經(jīng)過(guò)點(diǎn)A(3,4).
①求m、k的值;
②直接寫(xiě)出當(dāng)y1>y2時(shí)x的范圍: ;
(2)如圖2,過(guò)點(diǎn)P(1,0)作y軸的平行線l與函數(shù)y2的圖象相交于點(diǎn)B、與反比例函數(shù)y3=(x>0)的圖象相交于點(diǎn)C.
①若k=2,直線l與函數(shù),的圖象相交點(diǎn)D.當(dāng)點(diǎn)B、C、D中的一點(diǎn)到另外兩點(diǎn)的距離相等時(shí),求m﹣n的值;
②過(guò)點(diǎn)B作x軸的平行線與函數(shù)y1的圖象相交與點(diǎn)E.當(dāng)m﹣n的值取不大于1的任意實(shí)數(shù)時(shí),點(diǎn)B、C間的距離與點(diǎn)B、E間的距離之和d始終是一個(gè)定值.求此時(shí)k的值及定值d.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,分別以點(diǎn)A、C為圓心,以大于AC的長(zhǎng)為半徑畫(huà)弧,兩弧相交于點(diǎn)D和E,作直線DE交AB于點(diǎn)F,交AC于點(diǎn)G,連接CF,以點(diǎn)C為圓心,以CF的長(zhǎng)為半徑畫(huà)弧,交AC于點(diǎn)H.若∠A=30°,BC=2,則AH的長(zhǎng)是( )
A. B. 2C. +1D. 2﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某文具店購(gòu)進(jìn)一批紀(jì)念冊(cè),每本進(jìn)價(jià)為20元,在銷(xiāo)售過(guò)程中發(fā)現(xiàn)該紀(jì)念冊(cè)每周的銷(xiāo)售量y(本)與每本紀(jì)念冊(cè)的售價(jià)x(元)之間滿(mǎn)足一次函數(shù)關(guān)系:當(dāng)銷(xiāo)售單價(jià)為22元時(shí),銷(xiāo)售量為36本;當(dāng)銷(xiāo)售單價(jià)為24元時(shí),銷(xiāo)售量為32本.
(1)求出y與x的函數(shù)關(guān)系式;
(2)設(shè)該文具店每周銷(xiāo)售這種紀(jì)念冊(cè)所獲得的利潤(rùn)為w元,將該紀(jì)念冊(cè)銷(xiāo)售單價(jià)定為多少元時(shí),才能使文具店銷(xiāo)售該紀(jì)念冊(cè)所獲利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店購(gòu)進(jìn)一種商品,每件商品進(jìn)價(jià)30元.試銷(xiāo)中發(fā)現(xiàn)這種商品每天的銷(xiāo)售量y(件)
與每件銷(xiāo)售價(jià)x(元)的關(guān)系數(shù)據(jù)如下:
x | 30 | 32 | 34 | 36 |
y | 40 | 36 | 32 | 28 |
(1)已知y與x滿(mǎn)足一次函數(shù)關(guān)系,根據(jù)上表,求出y與x之間的關(guān)系式(不寫(xiě)出自變量x的取值范圍);
(2)如果商店銷(xiāo)售這種商品,每天要獲得150元利潤(rùn),那么每件商品的銷(xiāo)售價(jià)應(yīng)定為多少元?
(3)設(shè)該商店每天銷(xiāo)售這種商品所獲利潤(rùn)為w(元),求出w與x之間的關(guān)系式,并求出每件商品銷(xiāo)售價(jià)定為多少元時(shí)利潤(rùn)最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對(duì)應(yīng)值如表
x | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
下列結(jié)論:
①ac<0;
②當(dāng)x>1時(shí),y的值隨x值的增大而減。
③3是方程ax2+(b﹣1)x+c=0的一個(gè)根;
④當(dāng)﹣1<x<3時(shí),ax2+(b﹣1)x+c>0.
其中正確的結(jié)論是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D、E分別是AC、AB的中點(diǎn),CF∥AB交ED的延長(zhǎng)線于點(diǎn)F,連接AF、CE.
(1)求證:四邊形BCEF是平行四邊形;
(2)當(dāng)△ABC滿(mǎn)足什么條件時(shí),四邊形AECF是菱形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com