【題目】從甲地到乙地,先是一段平路,然后是一段上坡路,小明騎車從甲地出發(fā),到達乙地后立即原路返回甲地,途中休息了一段時間,假設(shè)小明騎車在平路、上坡、下坡時分別保持勻速前進.已知小明騎車上坡的速度比在平路上的速度每小時少5km,下坡的速度比在平路上的速度每小時多5km.設(shè)小明出發(fā)x h后,到達離甲地y km的地方,圖中的折線OABCDE表示y與x之間的函數(shù)關(guān)系.
(1)小明騎車在平路上的速度為km/h;他途中休息了h;
(2)求線段AB、BC所表示的y與x之間的函數(shù)關(guān)系式;
(3)如果小明兩次經(jīng)過途中某一地點的時間間隔為0.15h,那么該地點離甲地多遠?

【答案】
(1)15;0.1
(2)解:小明騎車到達乙地的時間為0.5小時,

∴B(0.5,6.5).

小明下坡行駛的時間為:2÷20=0.1,

∴C(0.6,4.5).

設(shè)直線AB的解析式為y=k1x+b1,由題意,得

,

解得: ,

∴y=10x+1.5(0.3≤x≤0.5);

設(shè)直線BC的解析式為y=k2x+b2,由題意,得

,

解得:

∴y=﹣20x+16.5(0.5≤x≤0.6);


(3)解:小明兩次經(jīng)過途中某一地點的時間間隔為0.15h,由題意可以得出這個地點只能在坡路上,因為A點和C點之間的時間間隔為0.3.設(shè)小明第一次經(jīng)過該地點的時間為t,則第二次經(jīng)過該地點的時間為(t+0.15)h,由題意得:

10t+1.5=﹣20(t+0.15)+16.5,

解得:t=0.4,

∴y=10×0.4+1.5=5.5,

答:該地點離甲地5.5km.


【解析】解:(1)小明騎車在平路上的速度為:4.5÷0.3=15(km/h), ∴小明騎車在上坡路的速度為:15﹣5=10(km/h),
小明騎車在下坡路的速度為:15+5=20(km/h).
∴小明在AB段上坡的時間為:(6.5﹣4.5)÷10=0.2(h),
BC段下坡的時間為:(6.5﹣4.5)÷20=0.1(h),
DE段平路的時間和OA段平路的時間相等為0.3h,
∴小明途中休息的時間為:1﹣0.3﹣0.2﹣0.1﹣0.3=0.1(h).
所以答案是:15,0.1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,ABC的高CD與角平分線AE相交點F,過點CCHAEG,交ABH.

(1)直接寫出∠CFE的度數(shù)________;

(2)求證:CF=BH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓柱形玻璃杯高為12cm、底面周長為18cm,在杯內(nèi)離杯底4cm的點C

處有一滴蜂蜜,此時一只螞蟻正好在杯外壁,離杯上沿4cm與蜂蜜相對的點A處,則螞蟻到達蜂蜜的最

短距離為 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,四邊形中,,,且,

試求:(1的度數(shù);(2)四邊形的面積(結(jié)果保留根號);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩地相距300千米,一輛貨車和一輛轎車先后從甲地出發(fā)向乙地. 如圖,線段OA表示貨車離甲地距離y(千米)與時間x(小時)之間的函數(shù)關(guān)系式;折線BCD表示轎車離甲地距離y(千米)x(小時)之間的函數(shù)關(guān)系.

下幾種說法:

①貨車的速度為60千米/小時;

②轎車與貨車相遇時,貨車恰好從甲地出發(fā)了3. 9小時;

③若轎車到達乙地后,馬上沿原路以CD段速度返回,則轎車從乙地出發(fā)小時再次與貨車相遇;

其中正確的個數(shù)是_________. (填寫序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若△ABC和△DEF的面積分別為S1、S2 , 則(
A.S1= S2
B.S1= S2
C.S1=S2
D.S1= S2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在ABC中,BE、CF分別是AC、AB兩邊上的高,在BE上截取BD=AC,在CF的延長線上截取CG=AB,連接AD、AG

1)求證:AD=AG;

2ADAG的位置關(guān)系如何,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了考察冰川的融化狀況,一支科考隊在某冰川上設(shè)定一個以大本營O為圓心,半徑為4km的圓形考察區(qū)域,線段P1P2是冰川的部分邊界線(不考慮其它邊界),當(dāng)冰川融化時,邊界線沿著與其垂直的方向朝考察區(qū)域平行移動,若經(jīng)過n年,冰川的邊界線P1P2移動的距離為s(km),并且s與n(n為正整數(shù))的關(guān)系是s= n2 n+ .以O(shè)為原點,建立如圖所示的平面直角坐標(biāo)系,其中P1、P2的坐標(biāo)分別為(﹣4,9)、(﹣13、﹣3).
(1)求線段P1P2所在直線對應(yīng)的函數(shù)關(guān)系式;
(2)求冰川邊界線移動到考察區(qū)域所需的最短時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC的三個頂點的坐標(biāo)分別為A(﹣2,3)、B(﹣6,0)、C(﹣1,0).
(1)請直接寫出于點B關(guān)于坐標(biāo)原點O的對稱點B1的坐標(biāo);
(2)將△ABC繞坐標(biāo)原點O逆時針旋轉(zhuǎn)90°,畫出對應(yīng)的△A′B′C′圖形,直接寫出點A的對應(yīng)點A′的坐標(biāo);
(3)若四邊形A′B′C′D′為平行四邊形,請直接寫出第四個頂點D′的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案