【題目】已知,如圖,四邊形中,,,,且,

試求:(1的度數(shù);(2)四邊形的面積(結(jié)果保留根號(hào));

【答案】1;

2

【解析】

(1)連接AC,由勾股定理求出AC的長(zhǎng),再根據(jù)勾股定理的逆定理判斷出△ACD的形狀,進(jìn)而可求出∠BAD的度數(shù);
(2)由(1)可知△ABC和△ADCRt△,再根據(jù)S四邊形ABCD=SABC+SADC即可得出結(jié)論.

解:(1)連接AC,如圖所示:

∵AB=BC=1,∠B=90°

∴AC=,

又∵AD=1,DC=,

∴ AD2+AC2=3 CD2=()2=3

即CD2=AD2+AC2

∴∠DAC=90°

∵AB=BC=1

∴∠BAC=∠BCA=45°

∴∠BAD=135°;

(2)由(1)可知△ABC和△ADC是Rt△,

∴S四邊形ABCD=S△ABC+S△ADC=1×1×+1××= .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小山的頂部是一塊平地,在這塊平地上有一高壓輸電的鐵架,小山的斜坡的坡度i=1: ,斜坡BD的長(zhǎng)是50米,在山坡的坡底B處測(cè)得鐵架頂端A的仰角為45°,在山坡的坡頂D處測(cè)得鐵架頂端A的仰角為60°.

(1)求小山的高度;
(2)求鐵架的高度.( ≈1.73,精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個(gè)頂點(diǎn)分別是A(﹣3,2),B(0,4),C(0,2).

(1)①將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對(duì)應(yīng)的△A1B1C;平移△ABC,若點(diǎn)A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(0,﹣4),畫出平移后對(duì)應(yīng)的△A2B2C2;
②若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2;請(qǐng)直接寫出旋轉(zhuǎn)中心的坐標(biāo);
(2)在x軸上有一點(diǎn)P,使得PA+PB的值最小,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A、B、C、D在⊙O上,O點(diǎn)在∠D的內(nèi)部,四邊形OABC為平行四邊形,則∠OAD+∠OCD=度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中正確的是(

A. 已知a,b,c是三角形的三邊,則a2+b2=c2

B. 在直角三角形中,兩邊的平方和等于第三邊的平方

C. RtABC中,∠,所以a2+b2=c2

D. RtABC中,∠,所以a2+b2=c2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣x2+2x+3與x軸相交于A、B兩點(diǎn),與y軸交于點(diǎn)C,頂點(diǎn)為D,拋物線的對(duì)稱軸DF與BC相交于點(diǎn)E,與x軸相交于點(diǎn)F.

(1)求線段DE的長(zhǎng);
(2)設(shè)過E的直線與拋物線相交于點(diǎn)M(x1 , y1),N(x2 , y2),試判斷當(dāng)|x1﹣x2|的值最小時(shí),直線MN與x軸的位置關(guān)系,并說(shuō)明理由;
(3)設(shè)P為x軸上的一點(diǎn),∠DAO+∠DPO=∠α,當(dāng)tan∠α=4時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從甲地到乙地,先是一段平路,然后是一段上坡路,小明騎車從甲地出發(fā),到達(dá)乙地后立即原路返回甲地,途中休息了一段時(shí)間,假設(shè)小明騎車在平路、上坡、下坡時(shí)分別保持勻速前進(jìn).已知小明騎車上坡的速度比在平路上的速度每小時(shí)少5km,下坡的速度比在平路上的速度每小時(shí)多5km.設(shè)小明出發(fā)x h后,到達(dá)離甲地y km的地方,圖中的折線OABCDE表示y與x之間的函數(shù)關(guān)系.
(1)小明騎車在平路上的速度為km/h;他途中休息了h;
(2)求線段AB、BC所表示的y與x之間的函數(shù)關(guān)系式;
(3)如果小明兩次經(jīng)過途中某一地點(diǎn)的時(shí)間間隔為0.15h,那么該地點(diǎn)離甲地多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,折線段AOB將面積為S的⊙O分成兩個(gè)扇形,大扇形、小扇形的面積分別為S1、S2 , 若 =0.618,則稱分成的小扇形為“黃金扇形”.生活中的折扇(如圖2)大致是“黃金扇形”,則“黃金扇形”的圓心角約為°.(精確到0.1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小商場(chǎng)以每件20元的價(jià)格購(gòu)進(jìn)一種服裝,先試銷一周,試銷期間每天的銷量(件)與每件的銷售價(jià)x(元/件)如下表:

x(元/件)

38

36

34

32

30

28

26

t(件)

4

8

12

16

20

24

28

假定試銷中每天的銷售量t(件)與銷售價(jià)x(元/件)之間滿足一次函數(shù).
(1)試求t與x之間的函數(shù)關(guān)系式;
(2)在商品不積壓且不考慮其它因素的條件下,每件服裝的銷售定價(jià)為多少時(shí),該小商場(chǎng)銷售這種服裝每天獲得的毛利潤(rùn)最大?每天的最大毛利潤(rùn)是多少?(注:每件服裝銷售的毛利潤(rùn)=每件服裝的銷售價(jià)﹣每件服裝的進(jìn)貨價(jià))

查看答案和解析>>

同步練習(xí)冊(cè)答案