【題目】如圖,等腰Rt△ABC中,∠C=90°,D為AC上一點(diǎn),連接BD,將線段BD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到線段DE,DE與AB相交于點(diǎn)F,過點(diǎn)D作DG⊥AB,垂足為點(diǎn)G.若EF=5,CD=2 ,則△BDG的面積為 .
【答案】96
【解析】解:過點(diǎn)E作EH⊥AC,垂足為H,連接AE.
∵∠BDE=90°,
∴∠BDC+∠EDH=90°.
又∵∠CBD+∠CDB=90°,
∴∠CBD=∠EDH.
在△BCD和△DHE中, ,
∴△BCD≌△DHE.
∴BC=DH,CD=EH=2 .
∵△ABC為等腰直角三角形,
∴BC=CA.
∴AC=DH.
∴DC=AH=2 .
∴AH=EH=2 .
∴AE= =4.
∵∠BAC=45°,∠EAH=45°,
∴∠FAE=90°.
∴AF= =3.
∵∠BDF=∠FAE,∠BFD=∠EFA,
∴△BDF∽△EFA.
∴ .
設(shè)DF=x,則BD=DE=x+5.
∴ .
解得:x=15.
∴DF=15,BD=20.
∴BG= BD=16,DG= =12.
∴ = =96.
故答案為;96.
過點(diǎn)E作EH⊥AC,垂足為H,連接AE.先依據(jù)AAS證明△BCD≌△DHE,從而得到BC=DH,CD=EH=2 ,由等腰直角三角形的性質(zhì)可知BC=CA,從而可證明AH=EH=2 ,由勾股定理可知AE=4.在△EFA中由勾股定理可求得AF=3,由∠BDF=∠FAE,∠BFD=∠EFA可知△BDF∽△EFA,設(shè)DF=x,則BD=DE=x+5由相似三角形的性質(zhì)可知: .解得:x=15.故此DF=15,BD=20,從而可求得BG= BD=16,DG= =12,最后依據(jù)三角形的面積公式求解即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】CD經(jīng)過∠BCA頂點(diǎn)C的一條直線,CA=CB.E,F(xiàn)分別是直線CD上兩點(diǎn),且∠BEC=∠CFA=∠α.
(1)若直線CD經(jīng)過∠BCA的內(nèi)部,且E,F(xiàn)在射線CD上,請解決下面兩個(gè)問題:
①如圖1,若∠BCA=90°,∠α=90°,則BE_____CF;EF_____|BE﹣AF|(填“>”,“<”或“=”);
②如圖2,若0°<∠BCA<180°,請?zhí)砑右粋(gè)關(guān)于∠α與∠BCA關(guān)系的條件_____,使①中的兩個(gè)結(jié)論仍然成立。
(2)如圖3,若直線CD經(jīng)過∠BCA的外部,∠α=∠BCA,請?zhí)岢?/span>EF,BE,AF三條線段數(shù)量關(guān)系的合理猜想并給出理由。.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD平分∠BAC,EG⊥AD于H,則下列等式中成立的是 ( )
A. ∠α=(∠β﹣∠γ) B. ∠α=(∠β+∠γ) C. ∠G=(∠β+∠γ) D. ∠G=∠α
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從一個(gè)等腰三角形紙片的某角的頂點(diǎn)出發(fā),能將其剪成兩個(gè)等腰三角形紙片,則原等腰三角形紙片的底角為_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=60°,△ABC的角平分線AD、CE相交于點(diǎn)O,
(1)求∠AOC的度數(shù);
(2)求證:OE=OD;
(3).猜測AE,CD,AC三者的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】⊙O是△ABC的外接圓,AB是直徑,過 的中點(diǎn)P作⊙O的直徑PG,與弦BC相交于點(diǎn)D,連接AG、CP、PB.
(1)如圖1,求證:AG=CP;
(2)如圖2,過點(diǎn)P作AB的垂線,垂足為點(diǎn)H,連接DH,求證:DH∥AG;
(3)如圖3,連接PA,延長HD分別與PA、PC相交于點(diǎn)K、F,已知FK=2,△ODH的面積為2 ,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABF≌△CDE.
(1)若∠B=30°,∠DCF=40°,求∠EFC的度數(shù);
(2)若BD=10,EF=2,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,O為AC中點(diǎn),過點(diǎn)O的直線分別與AB、CD交于點(diǎn)E、F,連結(jié)BF交AC于點(diǎn)M,連結(jié)DE、BO.若∠COB=60°,F(xiàn)O=FC,則下列結(jié)論:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正確結(jié)論的個(gè)數(shù)是( 。
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com