【題目】在桌面上,有若千個完全相同的小正方體堆成的一個幾何體,每個小正方體的邊長為,如圖所示.

請畫出這個幾何體的三視圖. (用黑色水筆描清楚);

若將此幾何體的表面噴上紅漆(放在桌面上的一面不噴),則幾何體上噴上紅漆的面積為 (用含的代數(shù)式表示)

若現(xiàn)在你的手頭還有這樣的一些邊長為的小正方體可添放在幾何體上,要保持主視圖和左視圖不變,則最多可以添加 個小正方體.

【答案】1)畫圖見解析;(230;(34;

【解析】

1)根據(jù)三視圖的定義,畫出三視圖即可;(2)根據(jù)露出的小正方體的面數(shù),可得幾何體的噴上紅漆的面積;(3)在第一層的第二排前面可以加一個小正方體,在第一層的第三列當中,前面可以加一個正方體,在第二層的第二列可以加一個正方體,所以最多可以添加的是三個小正方體;

解:(1)如圖所示:

2)露出表面的一共有30個,每個的面積都是,

則這個幾何體的總面積為:;

3)由題意可得,在第一層的第二排前面可以加一個小正方體,在第一層的第三列當中,前面可以加兩個正方體,在第二層的第二列可以加一個正方體;

即要保持主視圖和左視圖不變,最多可以添加四個小正方體;

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,于點D,點E是直線AC上一動點,連接DE,過點D,交直線BC于點F

探究發(fā)現(xiàn):

如圖1,若,點E在線段AC上,則______;

數(shù)學思考:

如圖2,若點E在線段AC上,則______用含m,n的代數(shù)式表示;

當點E在直線AC上運動時,中的結(jié)論是否任然成立請僅就圖3的情形給出證明;

拓展應用:若,,請直接寫出CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知△ABCAB=AC,以邊AB為直徑的⊙OBC于點D,交AC于點E,連接DE

1)求證:DE=DC

2)如圖2,連接OE,將∠EDC繞點D逆時針旋轉(zhuǎn),使∠EDC的兩邊分別交OE的延長線于點F,AC的延長線于點G.試探究線段DF、DG的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,FG分別為CD,AD的中點,BF=2,BG=3,,則BC的長度為(

A. B. C. 2.5D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某社區(qū)計劃對面積為1200m2的區(qū)域進行綠化.經(jīng)投標,由甲、乙兩個工程隊來完成,已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化面積的2倍,并且在獨立完成面積為400m2區(qū)域的綠化時,甲隊比乙隊少用4天.

(1)甲、乙兩施工隊每天分別能完成綠化的面積是多少?

2)設先由甲隊施工x天,再由乙隊施工y天,剛好完成綠化任務,求y與x的函數(shù)解析式;

3)在(2)的情況下,若甲隊綠化費用為1600元/天,乙隊綠化費用為700元/天,在施工過程中每天需要支付高溫補貼a元(100≤a≤300),且工期不得超過14天,則如何安排甲,乙兩隊施工的天數(shù),使施工費用最少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,AB=AC,BC交⊙O于點D, AC交⊙O于點E,∠BAC=45°。

(1)求∠EBC的度數(shù);

(2)求證:BD=CD。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,數(shù)軸上點在原點左邊,到原點的距離為8個單位長度,點在原點的右邊,從點走到點,要經(jīng)過32個單位長度.

1)求、兩點所對應的數(shù);

2)若點也是數(shù)軸上的點,點到點的距離是點到原點的距離的3倍,求點對應的數(shù);

3)已知,點從點向右出發(fā),速度為每秒1個單位長度,同時點從點向右出發(fā),速度為每秒2個單位長度,若點到點的距離與點到原點距離相等,則點到原點距離與點到點的距離與值是否變化?若不變,求其值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知x=y,則下列等式中,不一定成立的是(

A.x-3=y-3 B.x+5=y+5 C.-2x=-2y D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】3分)在Rt△ABC中,∠C=90°,AC=BC=1,將其放入平面直角坐標系,使A點與原點重合,ABx軸上,△ABC沿x軸順時針無滑動的滾動,點A再次落在x軸時停止?jié)L動,則點A經(jīng)過的路線與x軸圍成圖形的面積為

查看答案和解析>>

同步練習冊答案