【題目】(1)如圖1,a∥b,則∠1+∠2=
(2)如圖2,AB∥CD,則∠1+∠2+∠3= ,并說明理由
(3)如圖3,a∥b,則∠1+∠2+∠3+∠4=
(4)如圖4,a∥b,根據以上結論,試探究∠1+∠2+∠3+∠4+…+∠n= (直接寫出你的結論,無需說明理由)
【答案】故答案為:180°;360°;540°;(n﹣1)180°
【解析】
(1)根據兩直線平行,同旁內角互補得出答案;(2)過點E作EF∥AB,根據平行線的性質得出答案;(3)過∠2、∠3的頂點作a的平行線,然后根據平行線的性質得出答案;(4)過∠2、∠3…的頂點作a的平行線,然后根據平行線的性質得出答案.
(1)∵a∥b,
∴∠1+∠2=180°;
(2)過點E作EF∥AB,
∵AB∥CD,
∴AB∥CD∥EF,
∴∠1+∠AEF=180°,∠CEF+∠2=180°,
∴∠1+∠AEF+∠CEF+∠2=180°+180°,
即∠1+∠2+∠3=360°;
(3)如圖,過∠2、∠3的頂點作a的平行線,
則∠1+∠2+∠3+∠4=180°×3=540°;
(4)如圖,過∠2、∠3…的頂點作a的平行線,
則∠1+∠2+∠3+∠4+…+∠n=(n﹣1)180°.
科目:初中數學 來源: 題型:
【題目】如圖1,二次函數y= x2﹣2x+1的圖象與一次函數y=kx+b(k≠0)的圖象交于A,B兩點,點A的坐標為(0,1),點B在第一象限內,點C是二次函數圖象的頂點,點M是一次函數y=kx+b(k≠0)的圖象與x軸的交點,過點B作軸的垂線,垂足為N,且S△AMO:S四邊形AONB=1:48.
(1)求直線AB和直線BC的解析式;
(2)點P是線段AB上一點,點D是線段BC上一點,PD∥x軸,射線PD與拋物線交于點G,過點P作PE⊥x軸于點E,PF⊥BC于點F.當PF與PE的乘積最大時,在線段AB上找一點H(不與點A,點B重合),使GH+ BH的值最小,求點H的坐標和GH+ BH的最小值;
(3)如圖2,直線AB上有一點K(3,4),將二次函數y= x2﹣2x+1沿直線BC平移,平移的距離是t(t≥0),平移后拋物線上點A,點C的對應點分別為點A′,點C′;當△A′C′K是直角三角形時,求t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為創(chuàng)建“美麗鄉(xiāng)村”,某村計劃購買甲、乙兩種樹苗共400棵,對本村道路進行綠化改造,已知甲種樹苗每棵200元,乙種樹苗每棵300元.
若購買兩種樹苗的總金額為90000元,求需購買甲、乙兩種樹苗各多少棵?
若購買甲種樹苗的金額不少于購買乙種樹苗的金額,則至少應購買甲種樹苗多少棵?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,ABCD中,BD⊥AD,∠A=45°,E、F分別是AB,CD上的點,且BE=DF,連接EF交BD于O.
(1)求證:BO=DO;
(2)若EF⊥AB,延長EF交AD的延長線于G,當FG=1時,求AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB>BC,按以下步驟作圖:以A為圓心,小于AD的長為半徑畫弧,分別交AB、CD于E、F;再分別以E、F為圓心,大于EF的長半徑畫弧,兩弧交于點G;作射線AG交CD于點H.則下列結論:①AG平分∠DAB,②CH=DH,③△ADH是等腰三角形,④S△ADH=S四邊形ABCH.
其中正確的有( 。
A. ①②③ B. ①③④ C. ②④ D. ①③
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+b與反比例函數y= (x>0)的圖象交于A(m,6),B(3,n)兩點,與x軸交于點C,與y軸交于點D,下列結論:①一次函數解析式為y=﹣2x+8;②AD=BC;③kx+b﹣ <0的解集為0<x<1或x>3;④△AOB的面積是8,其中正確結論的個數是( )
A.4個
B.3個
C.2個
D.1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在扇形OAB中,∠AOB=90°,半徑OA=2 ,將扇形OAB沿過點B的直線折疊,點O恰好落在 上的點D處,折痕交OA于點C,則陰影部分的面積是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在正方形ABCD中,過點A引射線AH,交邊CD于點H(點H與點D不重合).通過翻折,使點B落在射線AH上的點G處,折痕AE交BC于E,延長EG交CD于F.
(感知)(1)如圖①,當點H與點C重合時,猜想FG與FD的數量關系,并說明理由.
(探究)(2)如圖②,當點H為邊CD上任意一點時,(1)中結論是否仍然成立?請說明理由.
(應用)(3)在圖②中,當DF=3,CE=5時,直接利用探究的結論,求AB的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com