【題目】正方形ABCD中,點M是直線BC上的一個動點(不與點B,C重合),作射線DM,過點B作BN⊥DM于點N,連接CN.
(1)如圖1,當點M在BC上時,如果∠CDM=25°,那么∠MBN的度數(shù)是 .
(2)如圖2,當點M在BC的延長線上時,
①依題意補全圖2;
②用等式表示線段NB,NC和ND之間的數(shù)量關(guān)系,并證明.
【答案】(1);(2)①見解析;②,見解析.
【解析】
(1)由正方形的性質(zhì)和對頂角相等、三角形內(nèi)角和定理得出∠MBN=∠CDM=25°即可;
(2)①由題意補全圖形即可;
②當N在DM上時,在NB上截取BE=ND,證明△CDN≌△CBE得出NC=EC,∠DCN=∠BCE,證出∠NCE=∠BCD=90°,得出△NCE是等腰直角三角形,得出NE=NC,即可得出結(jié)論;
當N在MD延長線上時,延長NB至E,使BE=ND,同理得:△CDN≌△CBE,得出NC=EC,∠DCN=∠BCE,證出∠NCE=∠BCD=90°,得出△NCE是等腰直角三角形,證出NE=NC,即可得出結(jié)論.
解:(1)∵四邊形ABCD是正方形,
∴BC=CD,∠DCM=∠BCD=90°,
∵BN⊥DM,
∴∠DNB=90°=∠BCD,
∵∠BMN=∠DMC,
∴∠MBN=∠CDM=25°;
故答案為:25°;
(2)①由題意補全圖形如圖2、圖4所示;
②線段NB,NC和ND之間的數(shù)量關(guān)系為:NB=ND+NC,或NC=NB+ND.
理由如下:
當N在DM上時,在NB上截取BE=ND,
∵∠MCD=∠BNM=90°,
∴∠DMC+∠CDN=∠DMC+∠CBE=90°,
∴∠CDN=∠CBE,
在△CDN和△CBE中,
,
∴△CDN≌△CBE(SAS),
∴NC=EC,∠DCN=∠BCE,
∴∠NCE=∠DCN+∠DCE=∠BCE+∠DCE=∠BCD=90°,
∴△NCE是等腰直角三角形,
∴NE=NC,
∴NB=BE+NE=ND+NC;
當N在MD延長線上時,延長NB至E,使BE=ND,
同理得:△CDN≌△CBE,
∴NC=EC,∠DCN=∠BCE,
∴∠NCE=∠DCN+∠DCE=∠BCE+∠DCE=∠BCD=90°,
∴△NCE是等腰直角三角形,
∴NE=NC,
∵NE=NB+BE,
∴NC=NB+ND.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】簡答題:
(1)當為何值時,關(guān)于的方程是一元二次方程?
(2)已知關(guān)于的一元二次方程有一個根是0,求的值.
(3)在第(2)題中,如果要使已知方程有一個根是l,那么m應(yīng)該等于什么數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】天空中有一個靜止的廣告氣球C,從地面A點測得C點的仰角為45°,從地面B測得仰角為60°,已知AB=20米,點C和直線AB在同一鉛垂平面上,求氣球離地面的高度.(結(jié)果精確到0.1米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在直角梯形中,,,,,.動點從點出發(fā),沿邊向點以每秒2個單位長的速度運動,動點同時從點出發(fā),在邊上以每秒1個單位長的速度向點運動,當其中一個動點到達端點時另一個動點也隨之停止運動.設(shè)運動的時間為(秒),
(1)①設(shè)的面積為,求與之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
②當為何值時,?能不能等于?為什么?
(2)①當為何值時,?
②當為何值時,點是在的垂直平分線上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,為正方形的邊上一點,將正方形沿折疊,點落在點處,連接并延長,交于點,求證:;
(2)如圖2,點分別在邊上,且,求證:
(3)如圖3,點分別在邊上,點分別在邊上,交于點,已知,,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝店購進一批甲、乙兩種款型襯衫,甲種款型共用了7800元,乙種款型共用了6400元,甲種款型的件數(shù)是乙種款型件數(shù)的1.5倍,甲種款型每件的進價比乙種款型每件的進價少30元.
(1)求甲、乙兩種款型的襯衫各購進多少件?
(2)商店進價提高60%標價銷售,銷售一段時間后,甲款型全部售完,乙款型剩余一半,商店決定對乙款型剩余的按標價的五折降價銷售,很快全部售完。求售完這批襯衫商店共獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】動點A從原點出發(fā)向數(shù)軸負方向運動,同時,動點B也從原點出發(fā)向數(shù)軸正方向運動,運動到3秒鐘時,兩點相距15個單位長度.已知動點A、B的運動速度比之是3:2(速度單位:1個單位長度/秒).
(1)求兩個動點運動的速度;
(2)A、B兩點運動到3秒時停止運動,請在數(shù)軸上標出此時A、B兩點的位置;
(3)若A、B兩點分別從(2)中標出的位置再次同時開始在數(shù)軸上運動,運動的速度不變,運動的方向不限,問:經(jīng)過幾秒鐘,A、B兩點之間相距4個單位長度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直角三角形ABC中,∠ACB=90°,E為AB上一點,且CE=EB,ED⊥CB于D,則下列結(jié)論中不一定成立的是( 。
A.AE=BEB.CE=ABC.∠CEB=2∠AD.AC=AB
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com