【題目】完成下列填空:

已知:如圖,ABCD,B=120°,CA平分∠BCD.求證:∠1=30°.

證明:∵ABCD( ),

∴∠B+BCD= ( ).

∵∠B= ( ),

∴∠BCD= ( ).

又∵CA平分∠BCD( ),

∴∠2= ( ).

ABCD( ),

∴∠1= =30°( ).

【答案】見解析.

【解析】由條件ABCD,根據(jù)兩直線平行,內(nèi)錯角相等可得到∠1=2,因此求∠1的度數(shù)可轉(zhuǎn)化為求∠2的度數(shù),而CA平分∠BCD,則應求∠BCD的度數(shù).由圖知∠BCD與已知的∠B是直線AB、CD被直線BC所截得的同旁內(nèi)角,由條件ABCD可知它們互補.

∵AB∥CD(__已知__),

∴∠B+∠BCD=__180_°__(__兩直線平行,同旁內(nèi)角互補__).

∵∠B=__120_°__(__已知__),

∴∠BCD=__60_°__(__等式的性質(zhì)__).

又∵CA平分∠BCD(__已知__),

∴∠2=__30_°__(__角平分線定義__).

∵AB∥CD(__已知__),

∴∠1=__∠2__=30°(__兩直線平行,內(nèi)錯角相等__).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A坐標為(0,3),點B在x軸上
(1)在坐標系中求作一點M,使得點M到點A,點B和原點O這三點的距離相等,在圖中保留作圖痕跡,不寫作法;
(2)若函數(shù)y= 的圖象經(jīng)過點M,且sin∠OAB= ,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象經(jīng)過點(0,﹣3),且頂點坐標為(﹣1,﹣4).
(1)求該二次函數(shù)的解析式;
(2)設該二次函數(shù)的圖象與x軸的交點為A、B,與y軸的交點為C,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知數(shù)軸上三點A,O,B對應的數(shù)分別為﹣5,0,1,點M為數(shù)軸上任意一點,其對應的數(shù)為x.

請回答問題:

(1)A、B兩點間的距離是_____,若點M到點A、點B的距離相等,那么x的值是_____

(2)若點A先沿著數(shù)軸向右移動6個單位長度,再向左移動4個單位長度后所對應的數(shù)字是 ____ 

(3)當x為何值時,點M到點A、點B的距離之和是8;

(4)如果點M以每秒3個單位長度的速度從點O向左運動時,點A和點B分別以每秒1個單位長度和每秒4個單位長度的速度也向左運動,且三點同時出發(fā),那么幾秒種后點M運動到點A、點B之間,且點M到點A、點B的距離相等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商品公司為指導某種應季商品的生產(chǎn)和銷售,在對歷年市場行情和生產(chǎn)情況進行調(diào)查基礎上,對今年這種商品的市場售價和生產(chǎn)成本進行了預測并提供了兩個方面的信息:如圖(1)(2).

注:兩圖中的每個實心黑點所對應的縱坐標分別指相應月份一件商品的售價和成本,生產(chǎn)成本6月份最高;圖(1)的圖象是線段,圖(2)的圖象是拋物線.
(1)在3月份出售這種商品,一件商品的利潤是多少?
(2)設t月份出售這種商品,一件商品的成本Q(元),求Q關于t的函數(shù)解析式.
(3)設t月份出售這種商品,一件商品的利潤W(元),求W關于t的函數(shù)解析式.
(4)問哪個月出售這種商品,一件商品的利潤最大?簡單說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC的面積是60,請完成下列問題:

(1)如圖①,AD是△ABCBC邊上的中線則△ABD的面積 _ACD的面積(選填“>”“<”“=”).

(2)如圖②,CD,BE分別是△ABCAB,AC邊上的中線,求四邊形ADOE的面積可以用如下方法:連接AO,AD=DB得:SADO=SBDO,同理:SCEO=SAEOSADO=x,SCEO=y(tǒng),SBDO=x,SAEO=y(tǒng),由題意得:SABESABC=30,SADCSABC=30,可列方程組為: 通過解這個方程組可得四邊形ADOE的面積為 .

(3)如圖③,ADDB=13,CEAE=12,請你計算四邊形ADOE的面積并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知線段AB

(1)請用尺規(guī)按下列要求作圖:

①延長線段AB到C,使BC=AB,

②延長線段BA到D,使AD=AC(不寫畫法,當要保留畫圖痕跡)

(2)請直接回答線段BD與線段AC長度之間的大小關系

(3)如果AB=2cm,請求出線段BD和CD的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,菱形ABCD的頂點A的坐標為(2,0),點B的坐標為(0,1),點C在第一象限,對角線BD與x軸平行.直線y=x+4與x軸、y軸分別交于點E,F(xiàn).將菱形ABCD沿x軸向左平移k個單位,當點C落在EOF的內(nèi)部時(不包括三角形的邊),k的值可能是( )

A.2 B.3 C.4 D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖2是裝有三個小輪的手拉車在“爬”樓梯時的側(cè)面示意圖,定長的輪架桿OA,OB,OC抽象為線段,有OA=OB=OC,且∠AOB=120°,折線NG﹣GH﹣HE﹣EF表示樓梯,GH,EF是水平線,NG,HE是鉛垂線,半徑相等的小輪子⊙A,⊙B與樓梯兩邊都相切,且AO∥GH.
(1)如圖2①,若點H在線段OB時,則 的值是
(2)如果一級樓梯的高度HE=(8 +2)cm,點H到線段OB的距離d滿足條件d≤3cm,那么小輪子半徑r的取值范圍是

查看答案和解析>>

同步練習冊答案