【題目】在矩形ABCD中,AB=6,AD=8,點(diǎn)E是邊AD上一點(diǎn),EM⊥BC交AB于點(diǎn)M,點(diǎn)N在射線MB上,且AE是AM和AN的比例中項(xiàng).
(1)如圖1,求證:∠ANE=∠DCE;
(2)如圖2,當(dāng)點(diǎn)N在線段MB之間,聯(lián)結(jié)AC,且AC與NE互相垂直,求MN的長(zhǎng);
(3)連接AC,如果△AEC與以點(diǎn)E、M、N為頂點(diǎn)所組成的三角形相似,求DE的長(zhǎng).
【答案】(1)見(jiàn)解析;(2);(3)DE的長(zhǎng)分別為或3.
【解析】
(1)由比例中項(xiàng)知,據(jù)此可證△AME∽△AEN得∠AEM=∠ANE,再證∠AEM=∠DCE可得答案;
(2)先證∠ANE=∠EAC,結(jié)合∠ANE=∠DCE得∠DCE=∠EAC,從而知,據(jù)此求得AE=8﹣=,由(1)得∠AEM=∠DCE,據(jù)此知,求得AM=,由求得MN=;
(3)分∠ENM=∠EAC和∠ENM=∠ECA兩種情況分別求解可得.
解:(1)∵AE是AM和AN的比例中項(xiàng)
∴,
∵∠A=∠A,
∴△AME∽△AEN,
∴∠AEM=∠ANE,
∵∠D=90°,
∴∠DCE+∠DEC=90°,
∵EM⊥BC,
∴∠AEM+∠DEC=90°,
∴∠AEM=∠DCE,
∴∠ANE=∠DCE;
(2)∵AC與NE互相垂直,
∴∠EAC+∠AEN=90°,
∵∠BAC=90°,
∴∠ANE+∠AEN=90°,
∴∠ANE=∠EAC,
由(1)得∠ANE=∠DCE,
∴∠DCE=∠EAC,
∴tan∠DCE=tan∠DAC,
∴,
∵DC=AB=6,AD=8,
∴DE=,
∴AE=8﹣=,
由(1)得∠AEM=∠DCE,
∴tan∠AEM=tan∠DCE,
∴,
∴AM=,
∵,
∴AN=,
∴MN=;
(3)∵∠NME=∠MAE+∠AEM,∠AEC=∠D+∠DCE,
又∠MAE=∠D=90°,由(1)得∠AEM=∠DCE,
∴∠AEC=∠NME,
當(dāng)△AEC與以點(diǎn)E、M、N為頂點(diǎn)所組成的三角形相似時(shí)
①∠ENM=∠EAC,如圖2,
∴∠ANE=∠EAC,
由(2)得:DE=;
②∠ENM=∠ECA,
如圖3,
過(guò)點(diǎn)E作EH⊥AC,垂足為點(diǎn)H,
由(1)得∠ANE=∠DCE,
∴∠ECA=∠DCE,
∴HE=DE,
又tan∠HAE=,
設(shè)DE=3x,則HE=3x,AH=4x,AE=5x,
又AE+DE=AD,
∴5x+3x=8,
解得x=1,
∴DE=3x=3,
綜上所述,DE的長(zhǎng)分別為或3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸為直線x=﹣1,圖象經(jīng)過(guò)B(﹣3,0)、C(0,3)兩點(diǎn),且與x軸交于點(diǎn)A.
(1)求二次函數(shù)y=ax2+bx+c(a≠0)的表達(dá)式;
(2)在拋物線的對(duì)稱(chēng)軸上找一點(diǎn)M,使△ACM周長(zhǎng)最短,求出點(diǎn)M的坐標(biāo);
(3)若點(diǎn)P為拋物線對(duì)稱(chēng)軸上的一個(gè)動(dòng)點(diǎn),直接寫(xiě)出使△BPC為直角三角形時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,以線段AB上的點(diǎn)O為圓心,0B為半徑作圓O,分別與邊AB,BC相交于D、E兩點(diǎn),過(guò)點(diǎn)E作EF⊥AC于F.
(1)判斷直線EF與⊙O的位置關(guān)系,并說(shuō)明理由.
(2)若OB=3,cosB=,求線段BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的弦,過(guò)點(diǎn)O作OC⊥OA,OC交于AB于P,且CP=CB.
(1)求證:BC是⊙O的切線;
(2)已知∠BAO=25°,點(diǎn)Q是弧AmB上的一點(diǎn).
①求∠AQB的度數(shù);
②若OA=18,求弧AmB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于A(1,4),B(4,n)兩點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)直接寫(xiě)出當(dāng)x>0時(shí),的解集.
(3)點(diǎn)P是x軸上的一動(dòng)點(diǎn),試確定點(diǎn)P并求出它的坐標(biāo),使PA+PB最。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)某校招聘教師一名,現(xiàn)有甲、乙、丙三人通過(guò)專(zhuān)業(yè)知識(shí)、講課、答辯三項(xiàng)測(cè)試,他們各自的成績(jī)?nèi)缦卤硭荆?/span>
應(yīng)聘者 | 專(zhuān)業(yè)知識(shí) | 講課 | 答辯 |
甲 | 70 | 85 | 80 |
乙 | 90 | 85 | 75 |
丙 | 80 | 90 | 85 |
按照招聘簡(jiǎn)章要求,對(duì)專(zhuān)業(yè)知識(shí)、講課、答辯三項(xiàng)賦權(quán)5:4:1.請(qǐng)計(jì)算三名應(yīng)聘者的平均成績(jī),從成績(jī)看,應(yīng)該錄取誰(shuí)?
(2)我市舉行了某學(xué)科實(shí)驗(yàn)操作考試,有A、B、C、D四個(gè)實(shí)驗(yàn),規(guī)定每位學(xué)生只參加其中一個(gè)實(shí)驗(yàn)的考試,并由學(xué)生自己抽簽決定具體的考試實(shí)驗(yàn).小王,小張,小厲都參加了本次考試.
①小厲參加實(shí)驗(yàn)D考試的概率是 ;
②用列表或畫(huà)樹(shù)狀圖的方法求小王、小張抽到同一個(gè)實(shí)驗(yàn)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某批發(fā)部某一玩具價(jià)格如圖所示,現(xiàn)有甲、乙兩個(gè)商店,計(jì)劃在“六一”兒童節(jié)前到該批發(fā)部購(gòu)買(mǎi)此類(lèi)玩具.兩商店所需玩具總數(shù)為120個(gè),乙商店所需數(shù)量不超過(guò)50個(gè),設(shè)甲商店購(gòu)買(mǎi)個(gè).如果甲、乙兩商店分別購(gòu)買(mǎi)玩具,兩商店需付款總和為y元.
(1)求y關(guān)于的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍;
(2)若甲商店購(gòu)買(mǎi)不超過(guò)100個(gè),請(qǐng)說(shuō)明甲、乙兩商店聯(lián)合購(gòu)買(mǎi)比分別購(gòu)買(mǎi)最多可節(jié)約多少錢(qián);
(3)“六一”兒童節(jié)之后,該批發(fā)部對(duì)此玩具價(jià)格作了如下調(diào)整:數(shù)量不超過(guò)100個(gè)時(shí),價(jià)格不變;數(shù)量超過(guò)100個(gè)時(shí),每個(gè)玩具降價(jià)a元.在(2)的條件下,若甲、乙兩商店“六一”兒童節(jié)之后去批發(fā)玩具,最多可節(jié)約2800元,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為弘揚(yáng)和傳承紅色文化,某校欲在暑假期間組織學(xué)生到A、B、C、D四個(gè)基地開(kāi)展研學(xué)活動(dòng),每個(gè)學(xué)生可從A、B、C、D四個(gè)基地中選擇一處報(bào)名參加.小瑩調(diào)查了自己所在班級(jí)的研學(xué)報(bào)名情況,繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖,其中扇形統(tǒng)計(jì)圖中A、D兩部分的圓心角度數(shù)之比為3:2.請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:
(1)在這項(xiàng)調(diào)查中,共調(diào)查了多少名學(xué)生?
(2)求去往A地和D地的人數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)小瑩和小亮分別從四個(gè)基地中隨機(jī)選一處前往,用樹(shù)狀圖或列表法求兩人前往不同基地的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC的頂點(diǎn)O是坐標(biāo)原點(diǎn),∠OAB=90°且OA=AB,OB=8,OC=5.
(1)求點(diǎn)A的坐標(biāo);
(2)點(diǎn)P是從O點(diǎn)出發(fā),沿X軸正半軸方向以每秒1單位長(zhǎng)度的速度運(yùn)動(dòng)至點(diǎn)B的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)O,B重合),過(guò)點(diǎn)P的直線l與y軸平行,交四邊形ABCD的邊AO或AB于點(diǎn)Q,交OC或BC于點(diǎn)R.設(shè)運(yùn)動(dòng)時(shí)間為t(s),已知t=3時(shí),直線l恰好經(jīng)過(guò)點(diǎn) C.
求①點(diǎn)P出發(fā)時(shí)同時(shí)點(diǎn)E也從點(diǎn)B出發(fā),以每秒1個(gè)單位的速度向點(diǎn)O運(yùn)動(dòng),點(diǎn)P停止時(shí)點(diǎn)E也停止.設(shè)△QRE的面積為S,求當(dāng)0<t<3時(shí)S與t的函數(shù)關(guān)系式;并直接寫(xiě)出S的最大值.
②是否存在某一時(shí)刻t,使得△ORE為直角三角形?若存在,請(qǐng)求出相應(yīng)t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com