【題目】下列結(jié)論正確的是( )
A.0是正數(shù)也是有理數(shù)
B.兩數(shù)之積為正,這兩數(shù)同為正
C.幾個數(shù)相乘,積的符號由負(fù)因數(shù)的個數(shù)決定
D.互為相反數(shù)的兩個數(shù)的絕對值相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)家莫倫在1925年發(fā)現(xiàn)了世界上第一個完美長方形.如圖是一個完美長方形,它恰能被分割成10個大小不同的正方形,其中標(biāo)注番號1的正方形邊長為5,則這個完美長方形的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與坐標(biāo)軸分別交于點A(0,8)、B(8,0)和點E,動點C從原點O開始沿OA方向以每秒1個單位長度移動,動點D從點B開始沿BO方向以每秒1個單位長度移動,動點C、D同時出發(fā),當(dāng)動點D到達(dá)原點O時,點C、D停止運(yùn)動.
(1)直接寫出拋物線的解析式: ;
(2)求△CED的面積S與D點運(yùn)動時間t的函數(shù)解析式;當(dāng)t為何值時,△CED的面積最大?最大面積是多少?
(3)當(dāng)△CED的面積最大時,在拋物線上是否存在點P(點E除外),使△PCD的面積等于△CED的最大面積?若存在,求出P點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)在4×4的方格中有五個同樣大小的正方形如圖1擺放,移動其中一個正方形到空白方格中,與其余四個正方形圖2至圖5組成的新圖形是一個軸對稱圖形,請在下面網(wǎng)格中畫出四種互不全等的新圖形.
(2)定義:如圖1,點M,N把線段AB分割成AM,MN和BN.若以AM,MN,BN為邊的三角形是一個直角三角形,則稱點M,N是線段AB的勾股分割點.已知點C是線段AB上的一定點,其位置如圖2所示,請在BC上畫一個點D,使點C,D是線段AB的勾股分割點(要求尺規(guī)作圖,保留作圖痕跡,畫出一種情形即可);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,點P是Rt△ABC斜邊AB上一動點(不與A、B重合),分別過A、B向直線CP作垂線,垂足分別為E、F、Q為斜邊AB的中點.
(1)如圖1,當(dāng)點P與點Q重合時,AE與BF的位置關(guān)系是 ,QE與QF的數(shù)量關(guān)系是 ;
(2)如圖2,當(dāng)點P在線段AB上不與點Q重合時,試判斷QE與QF的數(shù)量關(guān)系,并給予證明;
(3)如圖3,當(dāng)點P在線段BA(或AB)的延長線上時,此時(2)中的結(jié)論是否成立?請畫出圖形并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,D是BC的中點,AC的垂直平分線分別交AC、AD、AB于點E、O、F,則圖中全等三角形的對數(shù)是( )
A.1對 B.2對 C.3對 D.4對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一種記分方法:以80分為準(zhǔn),88分記為+8分,某同學(xué)得分為74分,則應(yīng)記為( )
A.+74分
B.﹣74分
C.+6分
D.﹣6分
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com