【題目】如圖,已知一次函數(shù) y=x﹣3 與反比例函數(shù) y=的圖象相交于點 A(4,n),與 x 軸相交于點 B.
(1)求 n 與 k 的值;
(2)以 AB 為邊作菱形 ABCD,使點 C 在 x 軸正半軸上,點 D 在第一象限,求點 D 的坐標;
(3)觀察反比例函數(shù)y=的圖象,當 y>﹣2 時,請直接寫出自變量 x 的取值范圍.
【答案】(1)n=3,k=12;(2)D(4+,3);(3) x<﹣6 或 x>0.
【解析】
(1)因為點在一次函數(shù)y=x﹣3 的圖象上,所以,又因為點在反比例函數(shù)圖象上,所以k=12.
(2)首先根據(jù)直線方程求出點B的坐標,再由勾股定理求出菱形邊長,再由菱形性質(zhì)得知四邊相等,最后根據(jù)平移性質(zhì)的關系即可寫出點的坐標.
(3)根據(jù)反比函數(shù)的性質(zhì)即可得到當y>-2時,自變量x的取值范圍.
解:(1)把 A 點坐標代入一次函數(shù)解析式可得 n=×4﹣3=3,
∴A(4,3),
∵A 點在反比例函數(shù)圖象上,
∴k=3×4=12;
(2)在 y=x﹣3 中,令 y=0 可得 x=2,
∴B(2,0),
∵A(4,3),
∴AB=,
∵四邊形 ABCD 為菱形,且點 C 在 x 軸正半軸上,點 D 在第一象限,
∴BC=AB=,
∴點 C 由點 B 向右平移個單位得到,
∴點 D 由點 A 向右平移個單位得到,
∴D(4+,3);
(3)由(1)可知反比例函數(shù)解析式為 y=, 令 y=﹣2 可得 x=﹣6,
結合圖象可知當 y>﹣2 時,x 的取值范圍為 x<﹣6 或 x>0.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點C按順時針方向旋轉n度后,得到△DEC,點D剛好落在AB邊上.
(1)求n的值;
(2)若F是DE的中點,判斷四邊形ACFD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線y=kx(k≠0)經(jīng)過點(12,﹣5),將直線向上平移m(m>0)個單位,若平移后得到的直線與半徑為6的⊙O相交(點O為坐標原點),則m的取值范圍為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是小東設計的“在三角形一邊上求作一個點,使這點和三角形的兩個頂點構成的三角形與原三角形相似”的尺規(guī)作圖過程.
已知:△ABC.
求作:在BC邊上求作一點P,使得△PAC∽△ABC.
作法:如圖,
①作線段AC的垂直平分線GH;
②作線段AB的垂直平分線EF,交GH于點O;
③以點O為圓心,以OA為半徑作圓;
④以點C為圓心,CA為半徑畫弧,交⊙O于點D(與點A不重合);
⑤連接線段AD交BC于點P.
所以點P就是所求作的點.
根據(jù)小東設計的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:∵CD=AC,
∴= .
∴∠ =∠ .
又∵∠ =∠ ,
∴△PAC∽△ABC( )(填推理的依據(jù)).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,過y軸上一個動點M作x軸的平行線,交雙曲線y= 于點A,交雙曲線于點B,點C、點D在x軸上運動,且始終保持DC=AB,則平行四邊形ABCD的面積是( 。
A. 7 B. 10 C. 14 D. 28
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】潮州旅游文化節(jié)開幕前,某鳳凰茶葉公司預測今年鳳凰茶葉能夠暢銷,就用32000元購進了一批鳳凰茶葉,上市后很快脫銷,茶葉公司又用68000元購進第二批鳳凰茶葉,所購數(shù)量是第一批購進數(shù)量的2倍,但每千克鳳凰茶葉進價多了10元.
(1)該鳳凰茶葉公司兩次共購進這種鳳凰茶葉多少千克?
(2)如果這兩批茶葉每千克的售價相同,且全部售完后總利潤率不低于20%,那么每千克售價至少是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,BC=8,沿直線MN對折,使A、C重合,直線MN交AC于O.
(1)求證:△COM∽△CBA;
(2)求線段OM的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于A、B兩點.
(1)利用圖中的條件,求反比例函數(shù)和一次函數(shù)的解析式.
(2)求△AOB的面積.
(3)根據(jù)圖象直接寫出使一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩個全等的直角三角形 ABC 和 DEF 重疊在一起,其中∠A=60°,AC=1.固定△ABC 不動,將△DEF 進行如下操作:
(1)如圖,△DEF 沿線段 AB 向右平移(即 D 點在線段 AB 內(nèi)移動),連接 DC、CF、FB,四邊形 CDBF 的形狀在不斷的變化,但它的面積不變化,請求出其面積.
(2)如圖,當 D 點移到 AB 的中點時,請你猜想四邊形CDBF 的形狀,并說明理由.
(3)如圖,△DEF 的 D 點固定在 AB 的中點,然后繞 D 點按順時針方向旋轉△DEF,使 DF 落在 AB 邊上,此時 F 點恰好與 B 點重合,連接 AE,請你求出 sinα的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com