【題目】已知,關(guān)于的分式方程.

1)當(dāng),時,求分式方程的解;

2)當(dāng)時,求為何值時分式方程無解:

3)若,且、為正整數(shù),當(dāng)分式方程的解為整數(shù)時,求的值.

【答案】1;(2;(3

【解析】

1)將ab的值代入方程得,解出這個方程,最后進行檢驗即可;

2)把代入方程得,分式方程去分母轉(zhuǎn)化為整式方程為,由分式方程有增根,得11-2b=0,或(不存在),或求出b的值即可;

3)把代入原方程得,將分式方程化為整式方程求出x的表達(dá)式,再根據(jù)x是正整數(shù)求出b,然后進行檢驗即可.

1)當(dāng),時,分式方程為:

解得:

經(jīng)檢驗:時是原方程的解

2)解:當(dāng)時,分式方程為:

①若,即時,有:,此方程無解

②若,即時,則

,即,,不成立

,即,解得

∴綜上所述,時,原方程無解

3)解:當(dāng)時,分式方程為:

是正整數(shù)

又∵是正整數(shù),是整數(shù).

經(jīng)檢驗,當(dāng)時,(不符合題意,舍去)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在半徑為4的⊙O中,圓心角∠AOB=90°,以半徑OA、OB的中點C、F為頂點作矩形CDEF,頂點D、E在⊙O的劣弧上,OMDE于點M.試求圖中陰影部分的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過點的直線與直線相交于點

1)直線的關(guān)系式為 ;直線的關(guān)系式為 (直接寫出答案,不必寫過程).

2)求的面積.

3)若有一動點沿路線運動,當(dāng)時,求點 坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,點P是正方形ABCD內(nèi)的一點,連PA、PB、PC.

(1)將PAB繞點B順時針旋轉(zhuǎn)90°PCB的位置(如圖1).

設(shè)AB的長為a,PB的長為bb<a),求PAB旋轉(zhuǎn)到PCB的過程中邊PA所掃過區(qū)域(圖1中陰影部分)的面積;

若PA=2,PB=4,APB=135°,求PC的長.

(2)如圖2,若PA2+PC2=2PB2,請說明點P必在對角線AC上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某中學(xué)有一塊四邊形的空地ABCD,如圖所示,為了綠化環(huán)境,學(xué)校計劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.

(1)求出空地ABCD的面積.

(2)若每種植1平方米草皮需要200元,問總共需投入多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在平面直角坐標(biāo)系中,點,點.

1)在圖①中的軸上求作點,使得的值最;

2)若是以為腰的等腰直角三角形,請直接寫出點的坐標(biāo);

3)如圖②,在中,,,點(不與點重合)是軸上一個動點,點中點,連結(jié),把繞著點順時針旋轉(zhuǎn)得到(即,),連結(jié)、,試猜想的度數(shù),并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系xOy中,橫坐標(biāo)為a的點A在反比例函數(shù)y1(x>0)的圖象上,點A′與點A關(guān)于點O對稱,一次函數(shù)y2=mx+n的圖象經(jīng)過點A′.

(1)設(shè)a=2,點B(4,2)在函數(shù)y1、y2的圖象上.

①分別求函數(shù)y1、y2的表達(dá)式;

②直接寫出使y1>y2>0成立的x的范圍;

(2)如圖①,設(shè)函數(shù)y1、y2的圖象相交于點B,點B的橫坐標(biāo)為3a,AA'B的面積為16,求k的值;

(3)設(shè)m=,如圖②,過點AADx軸,與函數(shù)y2的圖象相交于點D,以AD為一邊向右側(cè)作正方形ADEF,試說明函數(shù)y2的圖象與線段EF的交點P一定在函數(shù)y1的圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)的長方形ABCD中,E點在AD上,且BE2AE.今分別以BE、CE為折線,將ADBC的方向折過去,圖(2)為對折后A、B、CD、E五點均在同一平面上的位置圖.若圖(2)中,∠AED15°,則∠BCE的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象分別交軸、軸于點、點,與反比例函數(shù)的圖象在第四象限的相交于點,并且軸于點,軸于點,已知,且

求上述一次函數(shù)與反比例函數(shù)的表達(dá)式;

求一次函數(shù)與反比例函數(shù)的另一個交點坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案