【題目】如圖,在四邊形ABCD中,AB=AD,CB=CD,E是CD上一點(diǎn),BE交AC于F,連接DF.
(1)證明:∠BAC=∠DAC.
(2)若∠BEC=∠ABE,試證明四邊形ABCD是菱形.
【答案】證明見(jiàn)解析
【解析】
試題由AB=AD,CB=CD結(jié)合AC=AC可得△ABC≌△ADC,由此可得∠BAC=∠DAC,再證△ABF≌△ADF即可得到∠AFB=∠AFD,結(jié)合∠AFB=∠CFE即可得到∠AFD=∠CFE;
(2)由AB∥CD可得∠DCA=∠BAC結(jié)合∠BAC=∠DAC可得∠DCA=∠DAC,由此可得AD=CD結(jié)合AB=AD,CB=CD可得AB=BC=CD=AD,即可得到四邊形ABCD是菱形.
試題解析:
(1)在△ABC和△ADC中,
∵AB=AD,CB=CD,AC=AC,
∴△ABC≌△ADC,
∴∠BAC=∠DAC,
在△ABF和△ADF中,
∵AB=AD,∠BAC=∠DAC,AF=AF,
∴△ABF≌△ADF,
∴∠AFB=∠AFD.
(2)證明:∵AB∥CD,
∴∠BAC=∠ACD,
∵∠BAC=∠DAC,
∴∠ACD=∠CAD,
∴AD=CD,
∵AB=AD,CB=CD,
∴AB=CB=CD=AD,
∴四邊形ABCD是菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,D為等邊三角形ABC內(nèi)的一點(diǎn),DA=5,DB=4,DC=3,將線(xiàn)段AD以點(diǎn)A為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線(xiàn)段AD′,下列結(jié)論:①點(diǎn)D與點(diǎn)D′的距離為5;②∠ADC=150°;③△ACD′可以由△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到;④點(diǎn)D到CD′的距離為3;⑤S四邊形ADCD′ =6+.其中正確的有( 。
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),沿B→C→A勻速運(yùn)動(dòng)到點(diǎn)A,圖2是點(diǎn)P運(yùn)動(dòng)時(shí),線(xiàn)段BP的長(zhǎng)度y隨時(shí)間x變化的關(guān)系圖象,其中M為曲線(xiàn)部分的最低點(diǎn),則△ABC的面積是( )
A. 10B. 12C. 20D. 24
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】規(guī)定:如果關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)有兩個(gè)實(shí)數(shù)根,且其中一個(gè)根是另一個(gè)根的2倍,則稱(chēng)這樣的方程為“倍根方程”.現(xiàn)有下列結(jié)論: ①方程x2+2x﹣8=0是倍根方程;
②若關(guān)于x的方程x2+ax+2=0是倍根方程,則a=±3;
③若關(guān)于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,則拋物線(xiàn)y=ax2﹣6ax+c與x軸的公共點(diǎn)的坐標(biāo)是(2,0)和(4,0);
④若點(diǎn)(m,n)在反比例函數(shù)y=的圖象上,則關(guān)于x的方程mx2+5x+n=0是倍根方程.
上述結(jié)論中正確的有( )
A. ①② B. ③④ C. ②③ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等邊△ABC的邊長(zhǎng)為4cm,點(diǎn)P,Q分別從B,C兩點(diǎn)同時(shí)出發(fā),其中點(diǎn)P沿BC向終點(diǎn)C運(yùn)動(dòng),速度為1cm/s;
點(diǎn)Q沿CA,AB向終點(diǎn)B運(yùn)動(dòng),速度為2cm/s,設(shè)它們運(yùn)動(dòng)的時(shí)間為x(s),
(1)如圖(1),當(dāng)x為何值時(shí),PQ∥AB;
(2)如圖(2),若PQ⊥AC,求x;
(3)如圖(3),當(dāng)點(diǎn)Q在AB上運(yùn)動(dòng)時(shí),PQ與△ABC的高AD交于點(diǎn)O,OQ與OP是否總是相等?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A.F、C.D在同一直線(xiàn)上,點(diǎn)B和點(diǎn)E分別在直線(xiàn)AD的兩側(cè),且
AB=DE,∠A=∠D,AF=DC.
(1)求證:四邊形BCEF是平行四邊形,
(2)若∠ABC=90°,AB=4,BC=3,當(dāng)AF為何值時(shí),四邊形BCEF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對(duì)稱(chēng)軸是直線(xiàn)x=1,下列結(jié)論:①ab<0;②a+b+c<0;③b2>4ac;④3a+c<0.其中正確的是( 。
A. ①④ B. ②③④ C. ①②③④ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們規(guī)定在網(wǎng)格內(nèi)的某點(diǎn)進(jìn)行一定條件操作到達(dá)目標(biāo)點(diǎn):H代表所有的水平移動(dòng),H1代表向右水平移動(dòng)1個(gè)單位長(zhǎng)度,H-1代表向左平移1個(gè)單位長(zhǎng)度;S代表上下移動(dòng),S1代表向上移動(dòng)1個(gè)單位長(zhǎng)度,S-1代表向下移動(dòng)1個(gè)單位長(zhǎng)度,表示點(diǎn)P在網(wǎng)格內(nèi)先一次性水平移動(dòng),在此基礎(chǔ)上再一次性上下移動(dòng);表示點(diǎn)P在網(wǎng)格內(nèi)先一次性上下移動(dòng),在此基礎(chǔ)上再一次性水平移動(dòng).
(1)如圖,在網(wǎng)格中標(biāo)出移動(dòng)后所到達(dá)的目標(biāo)點(diǎn);
(2)如圖,在網(wǎng)格中的點(diǎn)B到達(dá)目標(biāo)點(diǎn)A,寫(xiě)出點(diǎn)B的移動(dòng)方法________________;
(3)如圖,在網(wǎng)格內(nèi)有格點(diǎn)線(xiàn)段AC,現(xiàn)需要由點(diǎn)A出發(fā),到達(dá)目標(biāo)點(diǎn)D,使得A、C、D三點(diǎn)構(gòu)成的格點(diǎn)三角形是等腰直角三角形,在圖中標(biāo)出所有符合條件的點(diǎn)D的位置并寫(xiě)出點(diǎn)A的移動(dòng)方法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩地間的直線(xiàn)公路長(zhǎng)為千米.一輛轎車(chē)和一輛貨車(chē)分別沿該公路從甲、乙兩地以各自的速度勻速相向而行,貨車(chē)比轎車(chē)早出發(fā)小時(shí),途中轎車(chē)出現(xiàn)了故障,停下維修,貨車(chē)仍繼續(xù)行駛.小時(shí)后轎車(chē)故障被排除,此時(shí)接到通知,轎車(chē)立刻掉頭按原路原速返回甲地(接到通知及掉頭時(shí)間不計(jì)).最后兩車(chē)同時(shí)到達(dá)甲地,已知兩車(chē)距各自出發(fā)地的距離(千米)與轎車(chē)所用的時(shí)間(小時(shí))的關(guān)系如圖所示,請(qǐng)結(jié)合圖象解答下列問(wèn)題:
(1)貨車(chē)的速度是_______千米/小時(shí);轎車(chē)的速度是_______千米/小時(shí);值為_______.
(2)求轎車(chē)距其出發(fā)地的距離(千米)與所用時(shí)間(小時(shí))之間的函數(shù)關(guān)系式并寫(xiě)出自變量的取值范圍;
(3)請(qǐng)直接寫(xiě)出貨車(chē)出發(fā)多長(zhǎng)時(shí)間兩車(chē)相距千米.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com