【題目】我們知道,兩點之間線段最短,因此,連接兩點間線段的長度叫做兩點間的距離;同理,連接直線外一點與直線上各點的所有線段中,垂線段最短,因此,直線外一點到這條直線的垂線段的長度,叫做點到直線的距離.類似地,連接曲線外一點與曲線上各點的所有線段中,最短線段的長度,叫做點到曲線的距離.依此定義,如圖,在平面直角坐標系中,點到以原點為圓心,以1為半徑的圓的距離為_____.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個頂點,其中點A(0,1),點B(﹣9,10),AC∥x軸,點P時直線AC下方拋物線上的動點.
(1)求拋物線的解析式;(2)過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當四邊形AECP的面積最大時,求點P的坐標;
(3)當點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車公司為了解某型號汽車在同一條件下的耗油情況,隨機抽取了n輛該型號汽車耗油所行使的路程作為樣本,并繪制了以下不完整的頻數(shù)分布直方圖和扇形統(tǒng)計圖.
根據(jù)題中已有信息,解答下列問題:
(1)求n的值,并補全頻數(shù)分布直方圖;
(2)若該汽車公司有600輛該型號汽車,試估計耗油所行使的路程低于的該型號汽車的輛數(shù);
(3)從被抽取的耗油所行使路程在,這兩個范圍內(nèi)的4輛汽車中,任意抽取2輛,求抽取的2輛汽車來自同一范圍的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點是一次函數(shù)圖像上一點,過點作軸的垂線是上一點(在上方),在的右側(cè)以為斜邊作等腰直角三角形,反比例函數(shù)的圖像過點,若的面積為6,則的面積是 ( )
A.B.4C.3D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點A為⊙O外一點,連接AO,交⊙O于點P,AO=6.點B為⊙O上一點,連接BP,過點A作CA⊥AO,交BP延長線于點C,AC=AB.
(1)判斷直線AB與⊙O的位置關(guān)系,并說明理由.
(2)若PC=4,求 PB的長.
(3)若在⊙O上存在點E,使△EAC是以AC為底的等腰三角形,則⊙O的半徑r的取值范圍是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線.
(1)求這條拋物線的對稱軸;
(2)若該拋物線的頂點在x軸上,求其解析式;
(3)設(shè)點,在拋物線上,若,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,的頂點A在反比例函數(shù)的圖像上,直線AB交y軸于點C,且點C的縱坐標為5,過點A、B分別作y軸的垂線AE、BF,垂足分別為點E、F,且.
(1)若點E為線段OC的中點,求k的值;
(2)若為等腰直角三角形,,其面積小于3.
①求證:;
②把稱為,兩點間的“ZJ距離”,記為,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,點P是平面內(nèi)不與點A,C重合的任意一點,連接,將線段繞點P旋轉(zhuǎn)得到線段,連結(jié).
(1)觀察猜想:如圖1,當時,線段繞點P順時針旋轉(zhuǎn)得到線段,則的值是________,直線與相交所成的較小角的度數(shù)是________;
(2)類比探究:如圖2,當時,線段繞點P順時針旋轉(zhuǎn)得到線段.請直接寫出與相交所成的較小角的度數(shù),并說明與相似,求出的值;
(3)拓展延伸:當時,且點P到點C的距離為,線段繞點P逆時針旋轉(zhuǎn)得到線段,若點A,C,P在一條直線上時,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小云在學(xué)習(xí)過程中遇到一個函數(shù).下面是小云對其探究的過程,請補充完整:
(1)當時,對于函數(shù),即,當時,隨的增大而 ,且;對于函數(shù),當時,隨的增大而 ,且;結(jié)合上述分析,進一步探究發(fā)現(xiàn),對于函數(shù),當時,隨的增大而 .
(2)當時,對于函數(shù),當時,與的幾組對應(yīng)值如下表:
0 | 1 | 2 | 3 | |||||
0 | 1 |
綜合上表,進一步探究發(fā)現(xiàn),當時,隨的增大而增大.在平面直角坐標系中,畫出當時的函數(shù)的圖象.
(3)過點(0,m)()作平行于軸的直線,結(jié)合(1)(2)的分析,解決問題:若直線與函數(shù)的圖象有兩個交點,則的最大值是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com