【題目】如圖,給出下列四組條件:

ABDEBCEF,ACDF;②ABDE,∠B=∠EBCEF;③∠B=∠E,BCEF,∠C=∠F;④ABDE,ACDF,∠B=∠E 其中,能使ABCDEF 的條件共有( )

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

根據(jù)全等三角形的判定方法判斷即可.

解:①AB=DE,BC=EFAC=DF,可以根據(jù)SSS證明ABC≌△DEF,正確;
AB=DE,∠B=E,BC=EF,可以根據(jù)SAS證明ABC≌△DEF,正確;
③∠B=E,BC=EF,∠ACB=DFE,可以根據(jù)ASA證明ABC≌△DEF,正確;
AB=DE,AC=DF,∠B=E,不能證明ABC≌△DEF,錯(cuò)誤;
故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形BCDE中,∠C=BED=90°,∠B=60°,延長CDBE得到RtABC,已知CD=2,DE=1

1)求證:AB=2BC

2)求RtABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCO的對(duì)角線BOx 軸上,若正方形ABCO的邊長為,點(diǎn)Bx負(fù)半軸上,反比例函數(shù)的圖象經(jīng)過C點(diǎn).

1)求該反比例函數(shù)的解析式;

2)當(dāng)函數(shù)值-2時(shí),請(qǐng)直接寫出自變量x的取值范圍;

3)若點(diǎn)P是反比例函數(shù)上的一點(diǎn),且PBO的面積恰好等于正方形ABCO的面積,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在整式乘法的學(xué)習(xí)中,我們采用了構(gòu)造幾何圖形的方法研究代數(shù)式的變形問題,借助直觀、形象的幾何圖形,加深對(duì)整式乘法的認(rèn)識(shí)和理解,感悟代數(shù)與幾何的內(nèi)在聯(lián)系,現(xiàn)有邊長分別為的正方形Ⅰ號(hào)和Ⅱ號(hào),以及長為,寬為的長方形Ⅲ號(hào),卡片足夠多,我們可以選取適量的卡片拼接成幾何圖形.(卡片間不重疊、無縫隙)

根據(jù)已有的學(xué)習(xí)經(jīng)驗(yàn),解決下列問題:

1)圖1是由1張Ⅰ號(hào)卡片、1張Ⅱ號(hào)卡片、2張Ⅲ號(hào)卡片拼接成的正方形,那么這個(gè)幾何圖形表示的等式是______;

2)小聰想用幾何圖形表示等式,圖2給出了他所拼接的幾何圖形的一部分,請(qǐng)你補(bǔ)全圖形;

3)小聰選取2張Ⅰ號(hào)卡片、2張Ⅱ號(hào)卡片、5張Ⅲ號(hào)卡片拼接成一個(gè)長方形,請(qǐng)你畫出拼接后的長方形,并直接寫出幾何圖形表示的等式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D、C、F、B四點(diǎn)在一條直線上,AB=DE,ACBD,EFBD,垂足分別為點(diǎn)C、點(diǎn)F,CD=BF.

求證:(1)ABC≌△EDF;

(2)ABDE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC 關(guān)于直線 PQ 對(duì)稱,關(guān)于直線 MN對(duì)稱.

1)用無刻度直尺畫出直線MN;

2)直線 MN PQ 相交于點(diǎn) O,試探究∠AOA2 與直線 MN,PQ 所夾銳角α的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1+∠2﹦180°,∠3﹦∠B,則DEBC,下面是王華同學(xué)的推導(dǎo)過程﹐請(qǐng)你幫他在括號(hào)內(nèi)填上推導(dǎo)依據(jù)或內(nèi)容.

證明:

∵∠1+∠2﹦180(已知),

∠1﹦∠4 _________________,

∴∠2﹢_____﹦180°.

EHAB___________________________________

∴∠B﹦∠EHC________________________________

∵∠3﹦∠B(已知)

∴ ∠3﹦∠EHC____________________

DEBC__________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)場去年種植了10畝地的南瓜,畝產(chǎn)量為2000kg,根據(jù)市場需要,今年該農(nóng)場擴(kuò)大了種植面積,并且全部種植了高產(chǎn)的新品種南瓜,設(shè)南瓜種植面積的增長率為 .
(1)則今年南瓜的種植面積為畝;(用含 的代數(shù)式表示)
(2)如果今年南瓜畝產(chǎn)量的增長率是種植面積的增長率的 ,今年南瓜的總產(chǎn)量為60000kg,求南瓜畝產(chǎn)量的增長率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知兩點(diǎn)(x1 , y1),(x2 , y2) 在函數(shù)y= - 的圖象上,當(dāng)x1>x2>0時(shí),下列結(jié)論正確的是( )
A.y1>y2>0
B.y1<y2<0
C.y2>y1>0
D.y2<y1<0

查看答案和解析>>

同步練習(xí)冊(cè)答案