【題目】如圖,在矩形中,小聰同學利用直尺和圓規(guī)完成了如下操作:
①分別以點和為圓心,以大于的長為半徑作弧,兩弧相交于點和;
②作直線,交于點.
請你觀察圖形解答下列問題:
(1)與的位置關系:
直線是線段的____________線;
(2)若,,求矩形的對角線的長.
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC,將△ABC繞點A逆時針旋轉60°,得到△ADE,連接BE,則∠BED的度數為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某超市預測某飲料有發(fā)展前途,用1600元購進一批飲料,面市后果然供不應求,又用6000元購進這批飲料,第二批飲料的數量是第一批的3倍,但單價比第一批貴2元.
(1)第一批飲料進貨單價多少元?
(2)若二次購進飲料按同一價格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價至少為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】類比等腰三角形的定義,我們定義:有一組鄰邊相等的凸四邊形叫做“等鄰邊四邊形”.
概念理解:
如圖,在四邊形中,添加一個條件使得四邊形是“等鄰邊四邊形”.請寫出你添加的一個條件,你添加的條件是________.
問題探究:
如圖,在“等鄰邊四邊形”中,,,,求對角線的長.
拓展應用:
如圖,“等鄰邊四邊形”中,,,,為對角線,試探究,,的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點E,F分別在矩形ABCD的邊AB,BC上,連接EF,將△BEF沿直線EF翻折得到△HEF,AB=8,BC=6,AE:EB=3:1.
(1)如圖1,當∠BEF=45°時,EH的延長線交DC于點M,求HM的長;
(2)如圖2,當FH的延長線經過點D時,求tan∠FEH的值;
(3)如圖3,連接AH,HC,當點F在線段BC上運動時,試探究四邊形AHCD的面積是否存在最小值?若存在,求出四邊形AHCD的面積的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,按以下步驟作圖:①以點A為圓心,以小于AC的長為半徑作弧,分別交AC,AB于點M,N;②分別以點M,N為圓心,以大于MN的長為半徑作弧,兩弧相交于點O;③連接AP,交BC于點E.若CE=3,BE=5,則AC的長為( )
A. 4B. 5C. 6D. 7
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+6過點A(6,0),B(4,6),與y軸交于點C.
(1)求該拋物線的解析式;
(2)如圖1,直線l的解析式為y=x,拋物線的對稱軸與線段BC交于點P,過點P作直線l的垂線,垂足為點H,連接OP,求△OPH的面積;
(3)把圖1中的直線y=x向下平移4個單位長度得到直線y=x-4,如圖2,直線y=x-4與x軸交于點G.點P是四邊形ABCO邊上的一點,過點P分別作x軸、直線l的垂線,垂足分別為點E,F.是否存在點P,使得以P,E,F為頂點的三角形是等腰三角形?若存在,直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(滿分10分)已知二次函數y=﹣x2+2x+m.
(1)如果二次函數的圖象與x軸有兩個交點,求m的取值范圍;
(2)如圖,二次函數的圖象過點A(3,0),與y軸交于點B,求直線AB與這個二次函數的解析式;
(3)在直線AB上方的拋物線上有一動點D,當D與直線AB的距離DE最大時,求點D的坐標,并求DE最大距離是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,內接于,,點為弦的中點,的延長線交于點,聯(lián)結,過點作交于點,聯(lián)結.
(1)求證:;
(2)如果的半徑為8,且,,求的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com