【題目】問題:探究函數(shù)的圖象與性質.小華根據(jù)學習函數(shù)的經驗,對函數(shù)的圖象與性質進行了探究.下面是小華的探究過程,請補充完整:在函數(shù)y=|x|﹣2中,自變量x可以是任意實數(shù);
Ⅰ如表是y與x的幾組對應值.
y | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
x | … | 1 | 0 | ﹣1 | ﹣2 | ﹣1 | 0 | m | … |
①m= ;
②若A(n,8),B(10,8)為該函數(shù)圖象上不同的兩點,則n= ;
Ⅱ如圖,在平面直角坐標系xOy中,描出以上表中各對對應值為坐標的點.并根據(jù)描出的點,畫出該函數(shù)的圖象;根據(jù)函數(shù)圖象可得:
①該函數(shù)的最小值為 ;
②該函數(shù)的另一條性質是 .
【答案】Ⅰ①1②-10;Ⅱ①-2②當x>0時,y隨x的增大而增大,當x<0時,y隨x的增大而減小
【解析】
Ⅰ①把x=3代入y=|x|﹣2,即可求出m;
②把y=8代入y=|x|﹣2,即可求出n;
Ⅱ①畫出該函數(shù)的圖象即可求解;
②根據(jù)圖象可得增減性.
解:Ⅰ①把x=3代入y=|x|﹣2,得m=3﹣2=1.
故答案為1;
②把y=8代入y=|x|﹣2,得8=|x|﹣2,
解得x=﹣10或10,
∵A(n,8),B(10,8)為該函數(shù)圖象上不同的兩點,
∴n=﹣10.
故答案為﹣10;
Ⅱ該函數(shù)的圖象如圖所示,
①該函數(shù)的最小值為﹣2;
故答案為﹣2;
②當x>0時,y隨x的增大而增大,
當x<0時,y隨x的增大而減。
故答案為:當x>0時,y隨x的增大而增大,當x<0時,y隨x的增大而減。
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC與△DEC是兩個大小不同的等腰直角三角形.
(1)如圖①所示,連接AE,DB,試判斷線段AE和DB的數(shù)量和位置關系,并說明理由;
(2)如圖②所示,連接DB,將線段DB繞D點順時針旋轉90°到DF,連接AF,試判斷線段DE和AF的數(shù)量和位置關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在“愛我永州”中學生演講比賽中,五位評委分別給甲、乙兩位選手的評分如下:
甲:8、7、9、8、8
乙:7、9、6、9、9
則下列說法中錯誤的是( )
A.甲、乙得分的平均數(shù)都是8
B.甲得分的眾數(shù)是8,乙得分的眾數(shù)是9
C.甲得分的中位數(shù)是9,乙得分的中位數(shù)是6
D.甲得分的方差比乙得分的方差小
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC三個頂點的坐標分別為A(﹣4,﹣1),B(﹣5,﹣4),C(1,﹣3),將△ABC向右平移5個單位長度,再向上平移3個單位長度得到△ ,其中點 分別是點A,B,C的對應點.
(1)請你在給出的坐標系中畫出和寫出點A′,C′的坐標;
(2)若△ABC內的一點P經過上述平移后的對應點為,用含的式子表示P點的坐標 ;(直接寫出結果即可)
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠一周計劃每日生產自行車100輛,由于工人實行輪休,每日上班人數(shù)不一定相等,實際每日生產量與計劃量相比情況如下表(以計劃量為標準,增加的車輛數(shù)記為正數(shù),減少的車輛數(shù)記為負數(shù)):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增減(輛) | -1 | +3 | -2 | -4 | +7 | -5 | -10 |
(1)生產量最多的一天比生產量最少的一天多生產多少輛?
(2)本周總的生產量是多少輛?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P為反比例函數(shù)y=(k>0)在第一象限內圖象上的一點,過點P分別作x軸,y軸的垂線交一次函數(shù)y=﹣x﹣4的圖象于點A、B.若∠AOB=135°,則k的值是( )
A. 2 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解:若x1,x2是關于x的一元二次方程ax2+bx+c=0(a≠0)的兩個根,則方程的兩個根x1,x2和系數(shù)a,b,c有如下關系:x1+x2=﹣,x1x2=,我們把它們稱為一元二次方程的根與系數(shù)關系定理.
問題解決:請你參考根與系數(shù)關系定理,解答下列問題:
(1)若關于x的方程x2+3x+a=0有一個根為﹣1,則另一個根為 .
(2)求方程2x2﹣3x=5的兩根之和,兩根之積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1的小正方形組成的網(wǎng)格中,△ABC的三個頂點均在格點上,請按要求完成下列各題:
(1)畫線段AD∥BC且使AD=BC,連接CD;
(2)線段AC的長為 ,CD的長為 ,AD的長為_____;
(3)△ACD為 三角形,四邊形ABCD的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“端午節(jié)小長假”期間,小明一家乘坐高鐵前往某市旅游,計劃第二天租用新能源汽車自駕出游.
根據(jù)以上信息,解答下列問題:
(1)甲公司每小時的租費是 元;
(2)設租車時間為x小時,租用甲公司的車所需費用為y1元,租用乙公司的車所需費用為y2元,分別求出y1,y2關于x的函數(shù)解析式;
(3)請你幫助小明計算并分析選擇哪個出游方案合算.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com